	Enterprise Software Solutions, LLC
www.entsoftsol.com
	9333 Forsyth Park Drive, Ste H, Charlotte, NC 28273

Toll Free:(888) 804-7089 E-mail: info@entsoftsol.com

[image: image66.jpg]Br

B Enterprise Software Solutions

Products and Solutions for
Business Intelligence (Bl) and Computer Telephony Integration (CTI)

Business Intelligence Companion
User Manual
[image: image67.jpg]

Table of Contents
4Overview

6Setup and Configuration Options

11Toolbar

13Filters

17Popup Windows

25Table

28Chart

30Map

32Decomposition Tree

34Heat Map

36Properties Explorer

383D Explorer

40Measure Explorer

42Dimension Explorer

44Clusters Explorer

46Dashboard

48Parse Tree

49MDX Panel

50Appendix A – MDX Syntax

50A

56B

56C

66D

72E

72F

72G

72H

72I

72K

72L

72M

72N

72O

72P

72Q

72R

72S

72T

72U

72V

72W

72X

72Y

Overview
The Enterprise has been collecting data for several decades. The data ends up in various formats and in different databases with a collective size into the Terabytes. This creates several major data management and reporting challenges:

· Inconsistent results

· Slow response times

· Data living in different places is difficult to reconcile and use

· Unmanageable number of reports

· Expensive technical expertise required for the various reporting tools and formats

· Delays in report generation and access to information

The BI Companion (BIC) is a solution that addresses all of these issues and more. The software is based on Microsoft SQL and Analysis 2005/2008/R2/2012 services. The front-end is a Silverlight application that works well over the Internet. Its auto-deploy and self-updating features makes it easy to maintenance free. The application uses the current NT user identity to connect directly to the data source thus avoiding the need for any changes to the Enterprise security model. Internet deployments are also fully supported using ASP.NET forms based authentication and authorization for securing the SSAS cube data. The application does not require any technical expertise. With very little effort, the end user can perform advance data analysis and report creation. The PC mouse is used as the primary input and allows access to 90%+ of the different features and functionality of the solution.

The BI Companion addresses the following business needs:

· 3-5 seconds average response time for ad-hoc reporting. The response time can be tuned and optimized to the specific implementation.

· “Single version of the Truth” is enforced in the company. All the users are going to the same data source so reported numbers are consistent across the enterprise.

· Technical expertise is NOT needed for report generation and data analysis. The only requirement is that the user knows how to work with the PC Mouse.

· Reports are created as needed without the need for persisting and managing them. The reports are always up-to-date. The reports can also be saved and retrieved.

· The Reports are dynamic so the user can modify at any time after creating them. They support the functionality: “Continue where you left off.”

· Data freshness can be brought down to a few seconds/minutes with SSAS proactive caching.

· The application can be pointed to various Analysis servers and data can be accessed securely within the Enterprise and across the Internet.
· The application is based on industry standards: XMLA, Web Services, SOAP/HTTP, TSQL , etc. HTTP Monitors can be used for easy troubleshooting of issues.

· The solution can be easily extended with new features.

· Theming is supported for easy integration.

· There are a lot of options for customizing the solution. The administrator have controlled over what features are exposed and how the software is working.

· The solution is bandwidth optimized for Internet access.

The BI Companion offers the following business features:

· There are over 20 chart types and 520 worldwide maps for visualizing the data. GIS maps are available with the BI Portal.

· Various visualization aids are also included: 3D Cube Explorer, Decomposition Charts, Heat maps, Dimension Explorer, Measure Explorer, Clusters Explorer, and more.

· Advance analytics are available thru custom MDX expressions.

· Data compression is utilized for faster network transfer times.
· On-demand metadata downloading for faster response times.

· NT Domain security is used for granular control to the data. Internet custom security is also fully supported.

· Financial reporting is fully supported so accounting can be incorporated as well. Both Balance Sheet and Income Statements can be implemented as well as other custom financial reports.

· Integration with existing systems can be done thru embedding the BIC inside other Silverlight or HTML/Jscript/Asp.NET apps. Actions and Events are used for communicating with external apps.

· “Drillthru” is another feature that allows the user to go to the various data sources and get all the available details for a given report number.

· Multi-dimensional data is the native format used by the solution so the data can be “sliced-and-diced” across multiple business aspects/dimensions thus exceeding the limitations of a standard reporting system based on tabular formatted data.

· Multi-lingual support and formatting. The application and the data are translated based on the user locale.

· Covers Operational to Tactical to Strategic reporting.

· Business Perspectives filter out only business objects that are relevant to the current data analysis. Examples of Perspectives are: Finance, Marketing, Sales, Operations, etc.

· Pagination is supported for smaller result sets and faster response times.

· Data-Mining features are available.

· Currency operations are fully supported allowing for point-in-time financial reporting as well as automatic time-based exchange rate conversions.

· Key Performance Indicators (KPIs) are fully supported.

· Excel integration and data export are fully supported.

· The application is optimized for Windows XP+ and Macintosh operating systems It runs on all browsers that support Silverlight.

· “What-If” analysis and Budgeting are supported via Write-Backs to the multi-dimensional data. The user can perform temporary and permanent updates to the data.

· Full integration with Microsoft Reporting Services (SSRS).

· User-friendly interface with a hierarchical “at-a-glance” view of the available objects.

· Asynchronous execution provides a more responsive user interface and experience.
· Report creation is usually less than a minute.

· SSL/HTTPs is used for secured communications.

The BI Companion offers a simple secured solution to both end-users and administrators. The idea behind the BI solution is “Self-Service” while accessing multi-dimensional data in the “Cloud”.

Setup and Configuration Options
The BI Companion (BIC) can be installed as a stand-alone module or as a part of the BI Portal. It can also be integrated into third-party solutions. The BIC is an Internet application that requires that runs on most popular browsers and requires the Silverlight platform. Windows or Macintosh operating systems are supported. The application is deployed on a web server as a static resource along with a hosting HTML page and a Javascript file for launching. It does NOT require middle-tier services or dynamic context, such as ASP.NET pages.

The BIC is downloaded by the web browser from a web location and started. Once it’s running, it downloads a “xap.xml” file, which is used for configuration options. The software connects directly to a web service exposed by SSAS. The Windows identity of the user is automatically forwarded and used by SSAS for authentication and authorization. The software allows the user to access to different SSAS server via a Connection Dialog box, where the XMLA/SSAS endpoint is entered and the database, cube, perspective and measure groups can be selected. The site Administrator can also “pre-package” different endpoints and expose them with simple names and descriptions. This can abstract the technical details from the end-user as well as restrict access only to allowed endpoints.

The software is self-updating, which means that the next time it’s started it will check for new version, auto-download them and notify the user that the new version is ready for use. The BIC can also be installed locally on the machine by right-clicking on the toolbar and selecting the Install menu item, or the Options dialog box. If the user selects to install the software locally, it will behave like a windows applications; the auto-update features will still work. There are some advantages of running it locally (aka Out-Of-Browser or OOB).

The OOB mode will elevate the BIC privileges, which enable certain features:

· Direct access to SSAS servers is supported. Instead of using HTTP location, the user can type the NETBIOS/Network server name in the Connection Dialog box and connect via OLEDB to the cube. Note: the SSAS OLEDB provider needs to be installed.

· Local Cubes can be used for browsing. This is very useful for disconnected users where working in an offline mode is needed. The user can export a slice of the cube and store it in a local file. Later one, s/he can browser the data while disconnected from the Network.

· Excel export will launch directly Excel and place the data in a new spreadsheet.

· Access to Outlook and other COM application can be enabled.

The site administrator can control how the BIC behaves and which features are available by configuring the “xap.xml” file, which is stored in the same directory where the “xap” file is. Here is a description of the different site configuration options:

· “<SSAS Server Instance Name>” with a certificate for value will install a production license and will turn off the “Demo Version” notification and icon.

· “Name” and “Description” are used for custom connection dialog selection, mentioned earlier. The next few options, defining the data source, will be packaged together and exposed with this and description.

· “UseClientHttp” can be True/False. This will enable either the web browser stack (useful for client-side certificates) or the client http stacks (useful for better error messages). “True” is the recommended setting since it provides meaningful error description when an issue occurs.

· “ReportsStorage” can be either “SQLServer” or “ReportServer”. It is used by the BI Portal for specifying the storage engine that will be used for saving and retrieving of reports.

· “UseCustomConnectDialog” can be True or False. This option will enable or disable the summarized connection interface mentioned earlier, where only the name and the description are shown to the user. If it’s set to False, the user can manually point the software to various SSAS endpoints.

· The “XmlaServer”, “Datasource”,” Database”,”Cube”,” Perspective”, and “MeasureGroup”(optional) are the default connection settings that are used for New Reports. They are usually provided by the SSAS administrator. If one of them is missing, the Connection Dialog box will be automatically displayed when the software is started. Note: “Enter”/new line/ is considered a valid character and should not be entered in these settings.

· “Theme” specifies the default styling of the software. This is an option used by the BI Portal and can be overwritten by the BI Portal Options dialog box and customized for each user.

· “Logo” and “LogoUrl” are the image and the main site URl that will be used by the BI Portal for branding the software.

· “ToolbarVisibilityMask” is a sequence of “0” and “1” (aka bitmap). Each digit represent an Icon in the toolbar. If it’s set to “0”, the corresponding icon will be hidden in the Toolbar; if it’s “1”, the icon will be visible. If all the Icons will be visible, this entry can be empty.

· “ParseTreeVisibilty”, “MdxPanelVisibility”, “TreeViewVisibility”, “MapVisibility”, “ChartVisibility”, “HeatMapVisibility”, “PropertiesExplorerVisibility”, “3DExplorerVisibility”, “DecompChartVisibility”, “MeasureExplorerVisibility”,” DimensionExplorerVisibility”,” ClustersExplorerVisibility”, “DashboardVisibility”, “ToolbarVisibility”, “DropAreaVisibility”, “KPIVisibility”, “FunctionsVisibility” and “NamedSetVisibility” are options that can be True of False, and control whether a certain element of the User Interface will be displayed or not.

· “NoMeasureGroups” can be True or False, and controls how Measure Groups are displayed. If it’s set to “True”, then no Measure Groups will be displayed and all the Measures will be arranged by Folders. If it’s set to “False”, the Measures will be arranged under Measure Groups.

· “AutoShowConnect” can be True or False, and controls if a connection dialog box will be automatically displayed if one of the required connection settings is missing. This will prompt the user that input is required.

· “BingMapsToken” will be used for licensing the images retrieved from the Bing mapping engine. The software comes with a Demo Version of Bing Maps. The feature is located under the Map Navigation Wheel Toolbar.

· “CompressReportBeforeSaving” can be True or False, and controls if the Reports will be saved with compression. This will reduce the size of the data that needs to be sent over the network and its storage requirements.

· “MapsLocationURL” is used for configuring the HTTP endpoint/URL where the file based maps are stored. Over 520 maps are available with the BIC. Note: The complete list can be found in the Maps.xml file inside the xap file, or it can be provided upon request.

· “DefaultMap” indicates which map, both GIS or File-Based, should be loaded on first load or when a map is not found based on the selected data.

· “UseMapCaching” can be True or False, and specifies if the retrieved map definitions should be cached or not. It works for both GIS and file-based maps. The user can clear the map cache by using the button under Map Properties. Enabling this option will save on a lot of bandwidth usage and will make the application much more responsive, especially for larger maps. The disadvantage is that if the maps are changed, the administrator need to temporarily turn it off so the cache can be cleaned on the clients, and then turn it back on.

· “UseGIS” can be True or False, and controls if Maps will use the GIS Database that is provided with the BI Portal. Alternatively, other GIS databases can be used. Custom shapes are also supported.

· “GISEndpoint” configures the Web Service location for retrieving GIS data.

· “ServicesEndpoint” is used by BI Portal to locate the services needed for storage, authentication, user information, and more. “

· “ExcelEndpoint” configures the location of the Web Services needed for exporting Excel files. It is listed for backward compatibility. It’s currently NOT being used.

· “HelpEndpoint” configures the location where the Help files can be found. Help files can be translated to multiple language. The two letter language identifier should be appended at the end (except for English). For example: “BICOverview.es.xml” is for Spanish.

· “DefaultPanel” can have the values: “ReportsBrowser”, ”ActiveReports”, “BICompanion”, “RSCompanion”, “DashboardDesigner”, “DMCompanion”, and “DMCompanion”. This option is used by BI Portal and specifies, which component will be displayed at startup.

· “ShowReportsBrowser”, “ShowActiveReports”, “ShowBICompanion”, “ShowRSCompanion”, “ShowDashboardDesigner”, and “ShowDMCompanion” can have True or False. These options are used by the BI Portal for displaying or hiding various add-ins.

· “DMEndpoint” specifies the SSAS Web Services that will be used by the Data Mining Companion (DMC) for retrieving data.

· “SSRSEndpoint” specifies the SSAS Web Services that will be used by the Report Server Companion (RSC) for retrieving data. It is also use by for storing reports when “ReportServer” is specified for the “ReportsStorage” option listed above.

· “UseJavascriptStorage” can be True or False, and configures the BIC to fire Javascript events when saving and loading reports. The BIC will send/receive XML report definitions to the Jscript application.

· “UseFileStorage” can be True or False, and configures the BIC will save and retrieve reports from the local file system. This is useful when centralize storage of reports is not available and the user is responsible for managing his/her report files.

· “Sessionless” can be True or False, and configures the BIC to require SSAS Sessions or not. If it’s True, the Cube Write-Backs will not be allowed and will be disabled in the UI, since they require state-full connections. The feature is very useful for load-balanced Web Farms with multiple servers where any one machine can pick up the next request.

· “LockSessionless” can be True or False, and configures if this option can be overwritten by the end-user.

· “RequestTimeoutInSeconds” specifies the amount of seconds before the SSAS will time out the request. It is highly recommended that this option is set to 60 seconds or less for Internet deployment where the number of users can vary and sharing the resources is important. Expensive request should be cancelled by the server after the specified time is elapsed. This will disallow individual requests to abuse server resources.

· “LockRequestTimeout” can be True or False, and configures if this option can be overwritten by the end-user. It is highly recommended that this option is set to True, so the user cannot control the Request Time-Out value and potentially abuse the server resources.

· ”BandwidthOptimized” can be True or False, and controls how the requests are handled. If it’s set to true the request will be first processed on the server and the number of records will be returned; if a configured threshold is exceeded the user will be advised that the request may take a while to process and will ask if it’s OK to proceed. This will give the user a chance to cancel expensive requests. This can be important for slow or/and long-distance connections where transferring large amount of data is not desirable. For example: executives working on an airplane. This option will require two trips to the server for each request: one to get a record count, and second one to retrieve the actual data. If the option is disabled, only one trip to the server will be made to retrieve the data. Note: for optimal bandwidth performance and best response times, all the data is compressed before being sent over the wire.

· “CellCountPromptTrigger” specifies the threshold for how many cells need to be returned before a warning is displayed to the end user. Rendering a high-number of cells (i.e. over 100,000) can consume a lot of resource and may take some time. With this option, the user will have a chance to cancel the request. Note: the data grid is virtualized so only visible rows are rendered. However, due to the rich metadata and the advance capability of the software, the data needs to be parsed, stored, and rendered into visualization aids such as Charts. This can be a resource intensive process; the user is given a chance to control the amount of data being rendered.

· “MemberCountPromptTrigger” specifies the threshold for how many members need to be returned before a warning is displayed to the end user. Rendering a high-number of members (i.e. over 100,000) can consume a lot of resource and may take some time. With this option, the user will have a chance to cancel the request.

· ”MemberCountPromptMandatory” works in conjunction with the option “MemberCountPromptTrigger”. If the threshold is exceeded the user is forced to filter the dimension members before they are displayed. This option is commonly used by Administrators to prevent users from retrieving too many records at time, which results in less scalable server and higher bandwidth utilization. Note: The BIC uses all the filtering metadata rules published by the cube. Each Dimension Attribute has a property called “Instance Selection”. If it’s set to “Filter Desired” or “Mandatory Filter”, the BIC will prompt or force the user to filter the dimension members before making the request to the server.

· “UseContextFilter” can be True or False, and configures how the members will be selected in the Filters. If it’s set to True, the ONLY members that exist for the “Default Measure” will be displayed. For example: if the Default Measure is “Reseller Sales Amount” and the option is set to True, then only Member that have Sales will be displayed. If it’s set to False, ALL the members will be shown. This option is useful for displaying in Filters by default only the members that have activities given the Default Measure; this will limit the amount of data being returned while it will help the user to faster located the needed members.

· ”ShowCalculatedMemberExpression” can be True or False, and specifies if the Calculated Measures in the metadata tree will display their expressions in the Tooltips.

· ”UserLanguage” is the two letter locale ID, and is used to specify the default User Interface language. This option can be overwritten by the BIC Options panel. Example: English=en; Spanish=es; etc.

· “DataLocaleID” is locale number that is used for specifying the language when retrieving data from SSAS. It works in conjunction with the option “UserLanguage”, which is used for translating the user interface, while this option translates the SSAS metadata and data.

· “AutoCheckMemberActions” can be True or False, and specifies if the members in the grid are automatically checked for Actions. SSAS does not support a Dimension Properties option that can return if a member has an action. Hence the BIC needs to make extra requests. If this option is set to “True”, the moving the mouse over a member in the grid will auto check if there are any available actions for this member, and if found, a green color will be displayed in the top left corner. This option is for user convenience but can create a lot of extra request. It should be set to False, if Actions are generally not exposed for members in the given cube. If it’s set to “False”, the user must click on the member Properties icon to see if any Actions are available.

· “RequestRetries” configures how many times a request should be resubmitted before an error is displayed. This can be useful for slow or/and unreliable network connections.

· “SetDefaultCustomerOnUserRegistration” can be True or False, and specifies that a newly registered User will be automatically assigned a default customer. This is an option used by the BI Portal for simplifying user management when only one customer will be served per site for multi-tenant deployment solutions.

· “ShowMetaDescription” can be True or False, and specifies if additional metadata description should be shown in the tooltips when the user moves the mouse over the different object in the metadata tree. The additional metadata information may be confusing so this option is for user convenience.

There are also some options in the web.config file. They are used by the BI Portal deployments. Here is additional information:

· “ExcelSessionTimeoutInMinutes" specifies the number of minutes before a session that allows Excel access over the Internet to the cube data is allowed. The user identity is sent to the cube for filtering data when the requests are made from Excel. This is a unique feature implemented by ESS.

· “ReturnSqlBytes" specifies how the GIS data is returned. It can be pre-parsed (using extra CPU cycles but compressing the data and saving bandwidth), or it can be sent in a raw format (with no extra CPU overhead at the expense of the extra bandwidth).

· “MinSqlPoints" specifies the minimum number of points for a GIS shape to qualify for selection. In other words, if the GIS object is too small, don’t display it. For example: Florida can have several thousand islands and the administrator want to filter only larger objects for saving bandwidth and speeding up response times.

· "SkipSqlPoints" specifies if any points should be eliminated from the GIS object. If GIS drawing precision is NOT a requirement, the administrator can configure this option to eliminate drawing points and reduced the size of every object, in order to save bandwidth and improve response times. For example: if an object is 10,000 points and this setting is 10, only 1,000 points will be returned – every 10th point will be selected. A combination of this and the above options can drastically reduce the GIS shape size. For example, the default settings will reduce a 75Mb GIS map of South America to only 500k. The quality of the GIS rendering can be controlled at the expense of the quantity

· "EnableGZipEncoding" specifies if GZip compression should be applied to the returned GIS data. If the GIS data is in raw format or if it’s pre-compressed with custom algorithms, disabling this option will eliminate the redundant task of compressing the data; this step is CPU-intensive and does not add any value.

The BI Companion is constantly being enhanced with new functionality and features. Some options may be missing from the documentation but will be added shortly.
Toolbar
The Toolbar provides a quick access to commonly used functionality. The visibility of each option can be controlled by the application setting. Some icons may be missing if they are hidden by the configuration. Hovering the mouse over each icon will provide you with a tooltip containing a short description of what the icon does when it’s clicked.

[image: image1.png]W = 7 s #O 0 EE B B s S| JUTNYaw Y T H 0

Here is a list of available icons tooltips in the BIC Toolbar:

· "Connect to Analysis Server or change the cube” will display a connect dialog box. Depending how its configured, the user will either select a pre-packaged Perspective with a Description, or will enter the SSAS Web Service endpoint, refresh the options and select the perspective. See the “Setup” Help Topic for more information on configuring the connection dialog box. Note: the Connect event will be fired for hosting applications.

· "Save current report" will save the report to the configured storage. Note: It will fire the ReportSaved event in the Javascript or Silverlight hosting application, or will save the report to the file system based on the configuration settings (the “Setup” Help Topic)

· "Save as new report" will allow an existing report to be saved as new report.

· "Load saved report” will load the report from the configured storage. Note: it will fire the ReportOpened event in the Javascript or Silverlight hosting application, or will open the report from the file system based on the configuration settings (see “Setup”).

· "Show or hide the object tree panel" will trigger the display or hiding of the metadata tree with the various objects on the left side.

· "Show or hide areas for object drag-n-drop. If hidden, it will auto-show if the object is dragged"

· "Show or hide the MDX panel at the bottom right corner"

· "Clears the current state of all the objects" – this will reset report to its default and will clear any selection. The user will be asked before clearing the report so accidental clicks can be corrected.

· "Zoom in all the objects", "Zoom out all the objects" and "Turn off Zooming" control the zoom level of the whole BIC client area.

· "Displays the current control in Full Screen" – Note: For security reasons, Silverlight disables the keyboard input when the application is in Full Screen mode (unless it’s running in Out-Of-Browser mode with elevated rights).

· "Create a calculated measure or a set" – this will display a dialog box that will allow the definition of either a new calculated measure or a new calculated member.

· "Displays the filter configuration for measures" – this will display the Measure Filter dialog box.

· "Show or hide empty rows and columns"

· "Switch rows with columns"

· "Show configuration options"

· "Format Cells" will display a dialog box where cell-formatting rules for each Measure can be edited. Multiple rules per Measure can be configured. The rules are additive so the first qualifying rule will be used. This give the maximum flexibility in configuring cell formats. For example: three rules are configured for Sales: 1) <100 will be in Red; 2) < 1000 will be in Yellow; 3) >=1000 will be in Green. This will display all the cells under 100 in Red, under 1000 in Yellow, and the rest in Green. Rules order can be adjusted with the green Up and Down arrows.

· "Show or hide the Chart"
· "Show or hide the Map”

· "Show or hide the Decomposition Chart”

· "Show or hide the Heat Map”

· "Show or hide the Properties Explorer”

· "Show or hide the 3D Explorer”

· "Show or hide the Measure Explorer”

· "Show or hide the Dimension Explorer”

· "Show or hide the Clusters Explorer"
· "Show or hide the Dashboard”

· "Print default tab content”
· "Export default tab to Image”
· "Export the grid and the chart to PDF” - If the Chart or Map tab is selected they will also be exported. . Report Header and Filter information can optionally be included.

· "Export the grid data to Excel” – If Pagination is enabled, the user will be prompted if all rows or just the displayed rows should be included in the export. Report Header Name and/or Filter information can optionally be included.
· "Export the connection and selected object information to Excel” – This will export the connection string so browsing can be continued inside Excel. Note: The BI Portal support custom authentication and cube browsing from within Excel over the Internet.
· "Export current data to a Local Cube file” – The user can export the currently selected sub-cube to a local file for offline browsing.

· "Browse Local Cube” – This option requires Out-Of-Browser installation since elevated privileges are required for accessing the SSAS OLEDB provider. Note: the OLEDB provider must be installed on the local machine for the correct bit-ness (i.e. 32bit or/and 64bit).
· "Show documentation and additional information” "Auto or manually execute MDX” – this will enable or disable the automatic execution when the object selection has changed. This is useful when the user wants to prepare the MDX before finally executing it.

· "Rebuild and execute the current report”

· "Go back to the previous report”

· "Go forward to the next report”
· "Take a snapshot image”

· "Network Statistics" – this will display the amount of bytes sent back and forth to the server as well as response times. Statistics for BIC-only traffic will be reported.

· "Shows the server current utilization” – This will display a floating window with statistical data about the current server utilization. CPU Utilization, Memory Usage, Disk Response Times, Calculated Cells/second, and Processing Queue length will be displayed. Note: ESS.dll must be installed on SSAS for this feature to work.
The BI Companion is constantly being enhanced with new functionality and features. Some options may be missing from the documentation but will be added shortly.
Filters
There are three types of filters.

1) The “Measure Filter” is used for filtering data based on measure values. It is accessible from the Toolbar or from clicking the icon of the textbox that contains the measure filter summary. The dialog window allows the user to select what filter function will be applied, the Measure that will be used, and the numeric value(s). For example, the user can define a filter that returned the Tops 10 Sales. The filter is applied to the whole set, not the individual dimension, if multiple dimensions are referenced.

[image: image2.png]Filter Records

Function: TopCount
Measure: Reseller Sales Amount
Number:

Clear Cancel

20.00 2

ok

2) The “Instant Filters” drop area is used for filtering data based on dimension members. It is located to the left of the grid, under “Rows’. The user can drag and drop Dimensions, Hierarchies, Levels, and Named Sets onto the box. Once an object is selected, the members at the current level will be displayed. If there are too many members to fit on the screen, the arrows on both ends are used to paginate the set. The is a also a checkbox to the right that will display a scrollbar for faster pagination. The “x” icon to the right will delete this filter. Multiple filters are supported. The user has also the option of drilling up and down the levels. Selecting a member will instantly filter the displayed data for that member. Multiple members can be selected with the Ctrl key (for individual members) and with the Shift key (for a range selection). There is also a “Play Interval (sec)” option and a “Play” button. The user can select the refresh interval and click on the play button for automated refresh of the data. If several members are selected, the auto-play will ONLY enumerate thru them. Multiple filters can be played at the same time. Note: when in dashboard mode, the checkbox will change to “Use as Filter” and will change the functionality of the filter. It will use the same data set but will change the dashboard data. For example: if Canada is clicked - the data can be either filtered for “Canada”, or “Canada” will be displayed in the Gauges using the same set.

[image: image3.png]T tnstant Fiters |/
10 3

Play Interval:

v \vi|v v

Australia | Canada | France | Germany United Kingdom) (EGERSrRBREN
| Accessories | Bikes || Clothing | Components b CATPROREE
Customer | NoDiscount | Reseller | & Al Promotions
FY2002 | FY2003 | FY2004 | FY2005 | FY2007 Al Periods

3) The regular “Filters” drop area is used for filtering data based on dimension members. It is located above the grid. The user can drag and drop Dimensions, Hierarchies, Levels, and Named Sets onto the box. This will trigger a display of a Dialog box where the filter can be configured for the selected dimension. The user needs to click on the “OK” button for the filter to take effect.

There are several tabs at the top exposing different options.

The first tab, “Browse”, allows the user to view the selected dimension as a tree with multiple levels. A member is selected by check the checkbox next to it and vice versa. The “Use Context Filter” is an option that allows the user to pre-filter the records before browsing them. The feature is ONLY applicable to the “Browse” tab. The combo box lists all the available measures. If the box is checked and a measure is selected, the members will be checked if they have values for the selected measure. This will limit the number of members only to those that are applicable to the current analysis. For example: if the measure “Reseller Sales” is analyzed then only geographies that haves actual sales should be displayed. The slider bar at the bottom allows the limit the range of measure values. To continue the previous example: the user may want to see only geographies with “Reseller Sales” over $1Million. The default for the checkbox can be controlled thru a server configuration option (see the “Setup” Help Topic). This option can be changed at any times. The new settings will apply on the next search or level expand in the tree. For example: the user may start at the root with all the sales above $10M and see only USA; then it can change the slider to show only sales greater than $100K and THEN expand the USA member. The new settings will be in effect. The user can restart the Browsing by clicking on the “Reset Tree” button. This is usually needed when the member expansion does not yield any results due to the specified filter. It is a way to force expanding again while re-applying the filter conditions.

The second tab, “Search”, allows the user to find members based on a search criteria. All properties of the member can be used for searches. Multiple values can be specified in the “Search For” box; they need to be “,”,”|” or “;” separated. The tooltip provides these instructions. The “Criteria” combo box allows various ways to search for members: Starts With, Contains, Does not Contain, etc. The “Level” combo box is used for selecting at what level of the dimension the members will be searched. The “Property” combo box will display all the properties for the selected level. Note: if a property cannot be found, the level should be changed since different levels will have different properties. The “Search” button will trigger the actual search. For example: if the search for members which “Member Name” “Starts With” “united, ca”, the list box will display “Calgary, California, …United States, United Kingdom”. If a “Property” is used for the search, its value will be included next to the member name (i.e. “Joe Brown(SSN=123-12-1234”).

The third tab, “Bulk Selection” is very useful for selecting lots of members at a time. For example: if a set is saved in a spreadsheet, it can be copied and paste in this box and all the members will be resolved and auto-selected. Hovering over the “Convert Text to Members” button will provide a tooltip with instructions.

The “Check All”, “Uncheck All”, and “Add Selected Members” allow faster management of selected members. The “Selected Members” checkbox allows the selection to be inversed. If it’s checked the name will change to “Excluded Members” so the filter will include all the members but the selected ones. This is useful when a large member sets needs to be selected but only few members need to be excluded. The “Show Results” combo box allows the found results during a search or browser to be paginated; the default for this setting can be changed in the BIC Options panel. Filter Pagination is recommended since Filters are usually done on large dimensions, which can potentially return lots of members.

When members are selected they form a “Set”. This set can be stored in the Metadata Tree as a Named Set. The button “Create Named Set” takes the current selection, prompts for a name, and stored is under “Named Sets” in the tree. The set definition will be stored in the report and recreated when the report is opened.

The “Help” button displays this page. The “Clear Selection” resets the current selection. The “Cancel” button will ignore any changes that have been made. The “OK” button will apply the current filter selections against the displayed data. A new filter will be added under “Filters” in the UI. Hovering over it will display all the selected members. Clicking on the icon will open the filter for Editing. Clicking on the “x” icon will delete the filter; dragging and dropping the filter on the “Delete” area will also clear the filter.

[image: image4.png]Filter: Geography

Browse | Search | Bulk Selection

Available Members:

o Fronce
o cermany

& United kingdom

4 Geography
4[5 Al Geographies
> [Australin
> [0 canada
> @liFrance
> |l Germany
> | United Kingdom

W United sotes

| united states

| Check All | Uncheck All || Add Selected Members |

—
—_—

0 0 Show Results: 50 Records per page |

| Help | [Create Named Set ' ResetTree | (Clear Selection | | Cancel | OK

At the bottom of the BIC there is a “Filter Summary” panel, which provides a summary what filters are in effect for the currently displayed data. The panel will auto hide if there are no filters. When exporting data to Excel, HMTL, or PDF, the filters summary will be included.
[image: image5.png]Geography: France, Germany, United Kingdom, United States
Fiscal: FY 2003, FY 2004, FY 2005

Popup Windows
There are various dialogs that will appear during the use of the BI Companion. This section covers them.

The “Options” panel is a launched form the Toolbar and contains different options that can change the behavior of the software:

· “Paginate Results” specifies if the main set should be paginated.

· “Paginate Filters” specifies if browsed data inside the filters will be paginated.

· “Language” changes the locale of the User Interface

· “Request Timeout (sec)” instructs the server for how long to process request before cancelling it. This option can be locked by the administrator. For Internet deployments it is recommended a value of 60sec or less. See the “Setup” topic.

· “Measure Filter Number” specifies the default numeric value for the Measure Filter dialog box.

· “Non Empty” Rows and Columns options will filter out rows and columns, for which all the cells are empty.

· “Parent Levels On Top” will build the grid with placing the parent before or after its children.

· “Bandwidth Optimized” specifies if for each request the number of rows should be retrieved first and then the actual data should be requested. This will prevent sending large amounts of data over slow connections. ESS.DLL is required to be installed on the SSAS box for this feature to work correctly.

· “Sessionless” will trigger requests to the server without using sessions. This allows the application to use any available server in a load-balanced web farm. If it’s enabled, Cube Write-Backs will not be allowed since they require sessions. This option can be locked by the administrator.

· “Add Calculated Members” will include the equivalent MDX function in the request.

· “Update Isolated Mode” is applicable to SQL 2008 and above. It specify how a Write-Back is performed. See SQL BOL for more info.

· “Place Measures On Columns” specifies where the Measures are allowed to be placed.

· “Ignore Levels When Sorting” specifies how the records are sorted when multiple levels from the same dimensions are present. If it’s checked then the members will be sorted according to their measure values without taking into consideration their levels. If it’s unchecked, then the sorting will ONLY apply to members within the same level. For example: “All=200; Canada=-100; USA=300” will be sorted in ascending order “Canada, All, USA” with the option on, and “All, Canada, USA” with the option off.

· “Use Lowest Level” specifies what data will be used for Charts and Maps. If it’s checked then the lowest level members are used; if it’s unchecked then all the members are used. Using the lowest level prevents parent and children being charted side-by-side since the charts are usually distorted since parents have much higher values.

· “Use non-empty CrossJoins” will modify the MDX to filter out empty cells.

· “Symmetric Expand” is used when more than one Dimension is placed on the same Axis. When the user clicks the expand/collapse icon on the second and above dimensions, if the option is on the all the members of the clicked dimension will be expanded. This makes it simple to work with multiple dimensions so the user does not have to expand each member.

· “Show Total Level” will display or hide the “Total” level under each hierarchy. The Hierarchy will be used as a total level.

· “Install Local” will place the application on the desktop and make it behave like a regular windows application. The user can uninstall it from the same button.

· “Xmla” will show a popup window with the last Xmla request and response. This is very useful for reproducing and analyzing support issues. The user can click on the “Copy to Clipboard” button in the dialog window and then paste the content in an email or file and send it to support. Note: since the application is multi-threaded and any given time multiple request may be processed in the background, the last Xmla request and response may not match or apply to the issue at hand.

· “Request License” will be available if the software is running in Demo Mode. If it’s licensed a green security shield will appear.

· “Cancel” will ignore any changes to the setting. “Apply Options” will save the changes and rebuild the UI without closing the dialog window. “OK” will save the options and will close the window.
[image: image6.png]Options

Paginate Results: No Paging ~ Add Calculated Members: o/
Paginate Fitters: 50 Records per page | Update Isolated Mode:

Language: English ~ Place Measures On Columns: /'
Request Timeout(sec): 60 Tgnore Levels When Sorting: | |
Measure Fiter Number: >0 * Use Lowest Level w

Show a default value whi

Filtering for TOP N Records

— —

“Non Empty’ Rows:

v
Non Empty’ Columns: o/ S G

Bandwidth Optimized: Symmetric Expand
Sessinless Show Totaf Level 7
Version 27.00 Lcense: ©
05 Version 6.1.7600.0

SL Version: 60531.0 tnstal Locally

Xmla ‘Apply Options| || Cancel ok

The “New Calculation” panel allows the user to define both calculated measure and dimension members. The user needs to specify the Name of the new calculation, whether it’s a member or a set, where to place it, the format (if applicable), the sort order and the actual calculation. Functions and Objects can be dragged and dropped from the metadata tree. There “Add Calculation To Tree” allows the newly defined calculation to be persisted with the metadata tree and stored in the report. The “Help” button will display MDX reference documentation. The “Validate” button will check the syntax of the new calculation. The “Cancel” button will exit the window without saving the calculation. The “OK” button will close the form and save the calculation.

[image: image7.png]New Calculation

TAIL([Geography].[Geography].[State-Province], 10)

/Add Calculation ToTree || Help ||| validate | | cancel ||| ok

The “Filter Records” panel allows the user to define a measure filter. The “Function” for filtering is specified. The measure that will be used for filtering the records and the Number that will be used as a parameter to the Function is the next are the other two options. For example: the user can request that only the Top 10% of Sales should be displayed in the current selection. In future releases of the software, filtering rules will be specified for each referenced dimension.
[image: image8.png]Filter Records

Function: TopCount
Measure: Reseller Sales Amount
Number:

Clear Cancel

20.00 2

ok

The “Cell Formatting” panel allows the user to define rules for formatting the cells in the grid. The measure, for which the rule(s) apply, is selected from the combo box at the top. Multiple rules can be created when a Measure is selected in the list on the left side. The rules are cumulative so the first one, which conditions are met, is used. This allows for very flexible rules engine. The rules can be arranged with the green up and down arrows. . For example: three rules are configured for Sales: 1) <100 will be in Red; 2) < 1000 will be in Yellow; 3) >=1000 will be in Green. This will display all the cells under 100 in Red, under 1000 in Yellow, and the rest in Green.

[image: image9.png]Cell Formatting

Reseller Average Unit Price
End of Day Rate
Reseller Gross Profit

IReseller Sales Amount |

(& cancel AlM- ok |

There are several popups that are related to exporting the data and the visualization aids to Excel, PDF, HTML, PNG, or JPEG. The requested information is self-explanatory. For example: Report name, Width and Height of the Image, Export All Data, etc.

[image: image10.png]Export Options

N 1210

=

Cancel

=lpx

~lpx

ok

 [image: image11.png]

There are two popups associated with “Local Cubes”. The first one exports the current sub-cube to a local cube file. The second one opens a local cube file for browsing. Both options ask for the name of the file and if a password is needed.

[image: image12.png]cidventurevoriajaut

The “Help” popup displays the information related to the currently selected tab or user interface element.
[image: image13.png]“ Table

BI Companion

User Interface

This feature allows the exploration of data with interactive grids. The user can
click on a cell or a member and interact with the data via various options.
Multiple dimensions can be placed both on rows and columns. Measures can be
placed on either rows or columns; the Toolbar provides an option for easily
switching axis. The displayed data is based on the current user selection.

Instant, Dimension and Measure filters are automatically applied to the displayed
data. The formatting of the cell values is based on the cube measure definition.

The “Performance Monitor” popup displays information related to the current resource usage on the server.
[image: image14.png]BT A T i B B B B B T
0%

.;i;kr;,g,ﬁ,\ 1 e

m“ﬁ o

P Pl

o o

Metadata Tree
This tree displays all the objects exposed by the Analysis Server. For optimal performance, the metadata is downloaded on demand as the user browses the objects. The tree is initialized when the user connects to a Perspective or when a report is opened. Multiple perspectives from the same cube can be added and used during the analysis. This is possible since the underlying cube is the same. The additional Perspectives can be added from the Connection Dialog box.

The three contains several main nodes. Different nodes can be dragged and dropped to various areas: the grid, filters, instant filters, row, columns, and some of the visualization aides. When a node is dragged, the areas where it can be dropped will blink. Right-clicking on a node will also provide a context menu with options to add the object to appropriate areas. Hovering over each will display statistical information if the site configuration options allow the display of metadata description for the tree objects. Each node displays a different icon based on its type. The object types are set in the cube definition. It is a best practice that each dimension and hierarchy is assigned the correct type. The tree will use various icons for the different types making it easy for the user to identify the different dimensions and how they can be used. If the same icon is used for all dimensions, this means that the dimensions are not configured with their types.

The “Business Perspectives” is the root node and it is just a container for the main nodes:

· The “Functions” node displays all the functions supported by the server; the functions are grouped together according to functionality and objects to which they can be applied. The user can drag and drop functions onto the “New Calculation” dialog box, which is opened from the toolbar. Hovering over the function will show a tooltip with a short description.

· There could be one or more Perspective nodes. They are containers for other objects. Hovering over them will show a tooltip with statistics such as: Server Version, Edition, Endpoint, Database, Cube, Perspective, etc.

· “Measures” is a node that is expanded by default. It contains the KPIs and the Measure Group nodes. If Measure Group nodes are disabled from the configuration settings (see the “Setup” Help topic), then the Measures will be organized and displayed by Folder.

· “KPIs” is a node that can be expanded and the KPIs exposed by the cube will be displayed organized by Folders. Hovering over a KPI will display its description and the associated Measure Group. The Value, Goal, Status, Trend are displayed as sub-nodes under each KPI. They can be dragged and dropped on the grid for displaying their values and status images.

· “Measure Group” is a container for associated Measures. Hovering the mouse over it will display if it’s enabled for Write-Backs. The icon will also indicate with a red arrow if the measure group is write-enabled. Note: if the cube write-back fails this is usually due to not processing the write-back partition associated with the measure group. Write-backs can be done by clicking the cell containing a measure value from write-enabled measure group. If “Sessionless=True” in the site configuration, the write-backs will be disabled in the user interface since they require session-oriented connections.

· “Measure” node can be dragged and dropped on the grid or the drop area around the grid. Calculated Measures are marked with a different icon and display a tooltip with the expression used for defining them.

· “Dimensions” is a node that is expanded by default and contains Named Sets and Dimensions.

· “Named Sets” contains all the sets exposed by the cube. Each Named Set node will display a tooltip with the expression used for defining the set. The nodes can be dragged and dropped onto the grid, the drop area around the grid, or the Instant/Filters area.

· “Dimension” node can be dragged and dropped to: the grid, the drop area around the grid, filters, instant filters, and some visualization aids. This node is a container for Hierarchies and Named Sets associated with the given dimension.

· “Hierarchy” can be dragged and dropped to the same areas where the “Dimension” can be used. This code contains the hierarchy levels. User-defined hierarchies are displayed with a pyramid-like icon. Attribute-hierarchies are displayed with a vertical rectangle icon.

· “Level” node is displayed with an icon that contains dots; the number of dots corresponds to the level number. The “Total” level is the “All” level defined in the cube (if any); It can be optionally hidden from the BIC Options panel. The Level node can be dragged and dropped to the same areas where the “Hierarchy” and “Dimension” can be used. This node contains two nodes: Member Properties and Members.

· “Member Properties” displayed the properties associated with each level. A property is an attribute which is disabled for aggregation and analysis. The BIC tool provides a unique way for analyzing the data using Member Properties (see the “Properties Explorer” Help topic). A property can be dragged and dropped to where a regular Measure can be used. Images are fully supported.

· “Members” are just a container for displaying the actual members at the given level. This node is information only and can only be dragged and dropped on the New Calculation dialog box.

User-defined calculated measures and members can be defined and added to the metadata tree. The definitions are stored within the report definition and will be recreated when the report is opened.

[image: image15.png]|4 & Business perspectives

> f Functions
4 (@ Channel Sales
4 [ol] Measures.
B
4 B Financial Perspective
4 8 Grow Revenue
4 5 Channel Revenue
wl Channel Revenue Value

i Channel Revenue Goal

i Channel Revenue Status
@l Channel Revenue Trend
Exchange Rates
Reseller Orders
Reseller Sales
Sales Targets
Sales Amount Quota
4 14 Dimensions
4 () Named sets
> B sets
@ Date
© Delivery Date
$7 Destination Currency
16 Employee
4 9 Geagraphy
(- Named sets

]

4 2 Geography
b Total

Country

State-province

4 Member Properties

1 Country

5 @ Members

City.

Postal Code

R State-province
> 6 product

> & promotion

> Reseller

> 1d Reselle Sales Order Details
> 1d Sales Terrtory

» @ ship Date

> 4 Source Currency

Table
This feature allows the exploration of data with interactive grids. The user can click on a cell or a member and interact with the data via various options. Multiple dimensions can be placed both on rows and columns. Measures can be placed on either rows or columns; the Toolbar provides an option for easily switching axis. The displayed data is based on the current user selection. Instant, Dimension and Measure filters are automatically applied to the displayed data. The formatting of the cell values is based on the cube measure definition.

The “+” or “-“ icon next to the member name allows the user to expand or collapse the children of the clicked member. The “property” icons will a context menu with different options. The sorting icon allows for sorting the rows and/or columns by using the members’ names or cells’ values. The “paint canvas” icon indicates that the given Measure values are used for shading the chart elements; the “transparency” icon indicates that the measure values are used for the opacity of the chart elements. The font properties, foreground and the background of the cell are displayed based on the server formatting instructions. The header members are horizontally or vertically indented according to their level in the Dimension Hierarchy. The result set can also be paginated using the options below the grid; this limits the amount of data being retrieved from the server and improves rendering performance.

A “green” top left corner in a cell or a header indicates that there is one or more Actions available. In the headers, the green corner may appear after the mouse is moved over the cell; this is needed because of an SSAS limitation. All Actions types are supported. For example: an action may send the user to a map location, third party application, open an SSRS report, or display an Invoice TIFF file. Drillthrus are also supported by cell Actions, which allow the display of data, not available in the cube. The Drillthru data can be exported to Excel or printed.

When the user clicks on the member property icon, the context menu will be displayed with several options:

· Actions will display a list of available actions, which can be invoked

· Cross- Actions will display a list of available actions, which can be invoked Drills will allow the user to jump to another dimension using the current selection as a filter. For example: Clicking on France and selecting Product Categories will show the categories for France.

· Properties will display a grid with all the properties of the given member; image data and printing is fully supported.

· Trend Lines allows the user to manage the chart trend lines.

When the user clicks on the measure property icon, the context menu will be displayed with several options:

· Change the charting color of the clicked series

· Chart the charting the series on primary or secondary Y Axis

· Bring the series to front or send it back compared to the other series. This option applies only to certain chart types where chart elements can be position on top of each other.

· Change the chart type of the clicked series. Only compatible chart types with the base chart type are displayed.

· Change the base chart type.

· Dill up and down on selected dimensions

· Modify the rules for the cell formatting. For example: values that are over 100 should be in Yellow. Values over 200 should be in Green. Rules are cumulative which gives them a lot of flexibility.

· Data Bars allow the cells to be filled from left to right with a selected gradient color. The width of the gradient is based on the cell value in comparison to its pears.

· Display as Barcodes allows the use of various barcodes for displaying the cell values

· Add Calculation will display a popup where custom calculated members and measures can be defined.

· Filter Values will display the Measure Filter

· Use Measure for Shading/Transparency will use the currently selected measure value for shading the colors of the Series.

· Cross-Drills will allow the user to jump to another dimension using the current selection as a filter.

· Properties will display a grid with all the properties of the given member; image data and printing is fully supported.

· Chart Options will show the panel on the right side. Alternative way to show or hide the panel is thru double-clicking the splitter on the right.

· Trend Lines allows the user to manage the chart trend lines.

When the user clicks on a cell, the context menu will be displayed with several options:

· Actions will display a list of available actions, which can be invoked

· Change Background Color will overwrite the cell background

· Add Comment will display a dialog where notes can be entered. If a cell has a comment, a red triangle will appear in its right top corner.

· Rows and Columns allow the user to add a summary row or column using various aggregation functions. Only the inner most levels are used for the calculating the aggregated values.

· Show for <member> option will display a floating window with statistical information such as: Min, Max, Ranking, Last Activity Date, etc.

· Show As Floating Window checkbox works with the immediately following options for adding calculated measures. If it’s checked, then the new calculated measure will be displayed in as a floating chart.

· There will be a list of various Functions options, which can be used to easily add commonly used complex calculations. For example: Percent of Parent, Percent of Total, Ranking, Period-To-Date, Parallel Period, Period-Over-Period comparison, Last Activity, Moving Averages, Forecasting, etc. Time-related Functions will ONLY be available if a Time dimension is placed on the Measure-opposite Axis and the All level is expanded. This is required so proper calculations are made. For example: Year –To-Date requires that multiple periods are available for the same Measure Series.
· Update Cell allows the user to perform cube Write Backs. This is useful for budgeting application and “what if” analysis. This option will only be visible if the setting of the application is requires Sessions, and the Measure Group is write enabled and processed. Measure Groups will have a red downward arrow in the icon to indicate that they are write-enabled; the tooltip will also indicate this.

Hovering the mouse pointer over a cell will highlight the column and rows members associated with the cell value. The headers are frozen so they are visible when the cells are scrolled in any direction. The gird is virtualized for optimal performance; it only loads the rows that are currently visible.

This visualization aid is commonly used for analyzing data in a tabular format. All the aggregations are done on the server; the grid does not do any custom calculations other than the Row/Column summaries. The user can export the grid data to Excel, HTML, PDF, or/and PNG/JPEG file and use it in Dashboards, Presentations, or for external analysis. The Instant Filters can also be used for quickly filtering the data and visualizing the resulting data. The Auto-play option can also create an animated filtering and refresh of the displayed data. The options settings are stored in the report definition and will be recreated upon reopening the report. This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.

This feature CANNOT be shown or hidden from the toolbar.

[image: image16.png]Fiscal

e SO - Dot
Amount Quantity

[1AllGeographies | = $80,450,596.98 214,378 $527,507.93
$1,594,335.38 4,048 $28,534.05
Canada "3 $14,377,925.60” a1,761” $85,354.56
France] secorsarss’ 1404’ swmsies
lCemany N 1 963,950.08” 7300 $30,452.47
United Kingdom = s,279,008.83" 13193 $32,118.06

Unlted States | = $53,507,801.21

132,748 $311,132.51

Reseller

Gross i

0.58%

[E Change Background Color
2| Add Comment
=] Rows
W columns
Show for Australis”

Show As Floating Window
Percent Functions

Rank Functions

Update Cell

Chart
This feature allows the exploration of data with interactive Charts. The user can click on a data point and interact with the data via various options. Multiple Series are supported. Some chart types support only one series at a time. The charted data is based on the current user selection so there is no need for additional steps to start using this visualization. Instant, Dimension and Measure filters are automatically applied to the displayed data. The formatting of the values is based on the cube measure definition.
The charted data is controlled by the “Use Lowest Level” checkbox under the main “Options”. If it’s checked only the innermost values are charted; this is a desirable feature since placing parents and children values next to each other usually creates a skewed chart. If some series are missing from the chart, this means that there are lower levels and this option is selected.

The user can use the mouse to select and expand a chart section, or to zoom in and out with the mouse wheel. Hovering the mouse pointer over a sphere will display a tooltip with statistics. The scrollbar on Axis X can also be resized so the width of the chart will be increased for more details. Clicking on the Series colors inside the Legend will show or hide the corresponding Series. Clicking on the chart shapes will display a context menu with several options:

· Change the charting color of the clicked series

· Chart the charting the series on primary or secondary Y Axis

· Bring the series to front or send it back compared to the other series. This option applies only to certain chart types where chart elements can be position on top of each other.

· Change the chart type of the clicked series. Only compatible chart types with the base chart type are displayed.

· Change the base chart type.

· Dill up and down on selected dimensions

· Modify the rules for the cell formatting. For example: values that are over 100 should be in Yellow. Values over 200 should be in Green. Rules are cumulative which gives them a lot of flexibility.

· Data Bars allow the cells to be filled from left to right with a selected gradient color. The width of the gradient is based on the cell value in comparison to its pears.

· Display as Barcodes allows the use of various barcodes for displaying the cell values

· Add Calculation will display a popup where custom calculated members and measures can be defined.

· Filter Values will display the Measure Filter

· Use Measure for Shading will use the currently selected measure value for shading the colors of the Series.

· Chart Options will show the panel on the right side. Alternative way to show or hide the panel is thru double-clicking the splitter on the right.

The chart also offers a lot of formatting options. Some of these setting are: Chart Type Selection, Series Selection, 3D rendering, Shadow display, Labels formatting, Axis formatting, Special Effects, Legend, Zooming, Grids, Data Sampling, Logarithmic support, Scale Sets, Theming, Color Sets, Title, and more. There are three charts, which data and options are kept in sync: the chart above the main table, the chart in the second tab, and the decomposition root chart. When the options are changed in one of these charts, the other two charts are also updated.

There is also an advance option called “Multiple Charts”. It allows the data to be displayed in separate charts by either 1) grouping all the series by Measure and displaying each measure in a separate chart; or 2) displaying all the Measures for all Series in a separate chart. Changing the setting of the chart to the data will reset the multiple charts. When the grouping is by Measure, then the charts are placed one below the other and the interaction is synchronized among them. For example: the marker will move in all charts, zooming in and scrolling will be synchronized as well.

This visualization aid is commonly used for isolating data regions of interest as well as creating visually attractive data presentation. The user can export the map to a PNG/JPEG file and use it in Dashboards and Presentations. The Instant Filters can also be used for quickly filtering the data and visualizing the resulting data. The Auto-play option can also create an animated filtering and refresh of the displayed data. The options settings are stored in the report definition and will be recreated upon reopening the report. This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.

This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.

[image: image17.png]i
i

1,400,000,000%
1,200,000,000%
1,000,000,000%
'800,000,000%
600,000,000%
1400,000,000%

2,500,000,000%
2,000,000,000%:
1,500,000,000%
1,000,000,000%
500,000,000%
0%

@

$29,927,31
$110,604.67

Unitad Kingdom
nited States

$12,20314.
439,151

Unitad Kingdom
United States

0.37% ‘

000
$35,773152

420,53405
522011
$30,452.47
$25,43755
$161,260.95

3% ‘

Unitad Kingdom
'United States.

2855

001
003
004
006
007

) v 2002 Reseter Saes Amount
) v 2002 ReseterOrder sty
) v 2002, Discount Amourt

) v 2002 Reseter GrossProt Margin

) v 2003 Reseter Saes Amount
) v 2002 ReseterOrder sty
) v 2002 Discount Amourt

) v 2002 Reseter GrossProt Margin

) v 2004 Reseter Saes Amount
() v 2004 ReseterOrderQusrtty
) v 2004, Discount Amourt

) v 2004 Reseter GrossProt Margin

Map
This feature allows the exploration of data with interactive Maps. Two types of maps are supported: 1) Geo Information Systems (GIS) with absolute Longitude and Latitude coordinates*; and 2) over 520 file based shape files.). The displayed data is filtered by the selections in Instant, Measure and Dimension Filters. There are some restrictions for proper mapping of members to map regions: 1) the Geographic dimension MUST be marked as such in the cube definition; 2) it must be placed on Rows; and 3) it must be the first dimension if multiple dimensions are place on Rows.

The member Key, Caption and Values are used for looking up map regions and making an association between the two. If the lookup fails then the member will be placed in the “Unknown Member” grid on the right side of the map. If the lookup is successful the map region will be colored, according to the legend, which is also placed on the right side. Multiple Series are supported but only one at a time is displayed. There is a “Series” combo box on the right side, which allows the user to change the current Series. The formatting of the values is based on the cube measure definition.

For example: The user selects “Geography Countries” and “Date Year” as Dimensions and “Reseller Sales Amount” and “Order Count” as Measures. Several different series will be created: one for each year and measure. The first one will be displayed. The Geography members are “Key=USA, Caption=United States”, “Key=CA, Caption= Canada” and “Key=FR, Caption=France”. The map engine will use the key and the caption of each member for search for a country which “short” or “long” names match the current values. The found member values will be displayed on the map with a legend color. The not-found members will be placed in the “Unknown Members” grid. The user can click on “unknown member” and select from the popup context menu any regions from the map, which is not associated with a member. This allows the user to manually associate members with map regions. The user selection is saved in the report definition.

Hovering the mouse pointer over a region will display a tooltip with statistics; it will also zoom the region and will change its color. If map region is clicked with the mouse, it will display a context menu with options to drill up and down. If the mouse left button is clicked and hold so a section of the map is selected, after releasing the mouse button, the selection will be zoomed in. A right-click with the mouse will allow the management of custom Markers. The Navigation Wheel in the top left corner allows the user to zoom in/out as well as reset the zoom. On the right side of the wheel, there is an popup toolbar, which provide quick access to Bing Maps, Map Options, Labels Display, Map Export and Printing.

If the Navigation Wheel Properties icon is clicked, the panel on the right side will rotate and a panel with map formatting options will be displayed. Some of these settings are: Shadows , Legend Colors, Tooltips, Region Labels and Font Properties, Region Colors and Behavior, 3D and Axis Rotation, Map Cache Management, Shapefile Rendering, Map Selection, Styling, and more.

This visualization aid is commonly used for isolating data regions of interest as well as creating visually attractive data presentation. The user can export the map to a PNG/JPEG file and use it in Dashboards and Presentations. The Instant Filters can also be used for quickly filtering the data and visualizing the resulting data. The Auto-play option can also create an animated filtering and refresh of the displayed data. The options settings are stored in the report definition and will be recreated upon reopening the report. This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration. Map Caching is also available as a configuration option so bandwidth usage is kept at a minimum while response times are optimal.

*The BI Portal comes with a SQL 2008 GIS Database, which covers the World and in most country is the lowest level is a municipality, a region, or a county. The database can be extended with new maps and levels. The data is hierarchically organized so a parent can easily found its children and vice versa. Custom shapes are fully supported as well as extending existing ones. Examples are: airplane seats, hotel rooms, gas pipelines with GIS coordinates, real-time GIS data, and more.

The administrator can control the quality and quantity of the GIS data sent to the client by using configuration options. For optimal bandwidth and response times, custom compression algorithms have been used to minimize the amount of data being transferred. All communications with the back end services are using GZIP compression. Enabling compression on the web server is NOT required.

[image: image18.png]

Decomposition Tree
This feature allows the exploration of data by ad-hoc cross drills. The use can jump from one dimension to another, using the previous one as a filter for the new one. The currently selected measures are use as data points in charts. The default chart displays the currently selected dimensions and measures. The user then can click on a chart data point and select the next dimension level for the cross drill. The options at the top dictate what measure will be next displayed and what measure filter will be applied. This allows the user to focus only on data of interest and improves performance by limiting the amount of data being returned and charted.

For example: Countries and Years are the currently selected Dimensions. The “Filter Measure” is set to “Reseller Sales Amount” with a “Filter Function: TopCount=5”. The user can click on the chart data point for France and Year 2010, and from the context menu, can select Product Categories. This will create a new chart that will display the Top 5 “Reseller Sales Amount” value for (France, Year 2010), broken down (decomposed) by Product Categories. The new chart will be placed one level below the main chart with a connecting line between below France. Hovering over the new chart will display a tooltip with the effective Filter for the displayed data. The user can change the “Filter Measure” to “Profit Margin” and “Filter Function: BottomCount=10”, then click on the chart data point “Clothing” and select from the context menu “Promotion Type”. This will perform another cross drill, creating a new chart with filter (France, Year 2010, Clothing) and will display the 10 promotions with lowest profit margin. The new chart will be displayed one level below, with a line connecting to the previous chart and a tooltip displaying the effective filter.

The formatting of the values is based on the cube measure definition. Changing the Instant or Dimension filters selection will reset the chart since the root data will change and the lines between the charts will be invalidated. Each chart can be individually formatted. The options are available on the right side of the chart via a splitter, which can be double clicked for easy show/hide functionality.

This visualization aid is commonly used for random analysis of data. The user can switch between dimensions and measures at any time, while maintaining the current context/filter. The selections and the options are NOT stored in the report definition and will NOT be recreated upon reopening the report. This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.
[image: image19.png]460,000,000,
$50,000,000
$40,000,000
430,000,000

520,000,000 o, Reseler Sais Amount
$10,000,000

0

4
Ei0 i

fustralis | France United Kingdom
Tanada | Germany United States

$711,838.79

$911,052.25
4

gi0 i

Accessories Companents.
No Discount Clothing Bikes

$24,16021

$09,059.63

o y
gio i

Clathing ora02 craoes cvzoos

Heat Map
This feature allows the exploration of data by using colors and shades. Two measures are selected for sizing and coloring the rectangles. Dimensions are used for selecting the members to be selected as well as grouping them. For example: Countries can be grouped by Year and colored by Profit Margin and sized by Reseller Sales Amount. This allows for quickly spotting members where Sales are high but Profit margins are low, and if this condition changes over the years.

The color indicates if a value is positive (green) or negative (red). The displayed data is filtered by the selections in Instant, Measure and Dimension Filters. Hovering the mouse pointer over a rectangle will display a tooltip with statistics. There are several options for selecting the displayed data:

· The “Sizing Measure” combo box will define the size of the rectangle for a given member in comparison to its peers.

· The “Coloring Measure” combo box will dictate the color of the rectangle for a given member in comparison to its peers.

· The “Grouping Hierarchy” and “Grouping Level” combo boxes are used for selecting the members that will be used for creating groups.

· The “Detail Hierarchy” and “Detail Levels” combo boxes are used for selecting the members to be used for creating rectangles.

· The “Coloring Schema” allows the user to specify the range of colors used for the legend and the rectangles. The “Start” and “End” colors can be specified by clicking on the colored rectangles.

· The “View Heat Map” button will rebuild the map.

· The “Legend” grid provides the value ranges corresponding to a given color.

· The formatting of the values is based on the cube measure definition.

This visualization aid is commonly used for analyzing large amounts of data and quickly isolating trends. The selections and the options are NOT stored in the report definition and will NOT be recreated upon reopening the report. This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.
[image: image20.png]v 2003 €Y 2004
Canada
v 2003
United States
Y2004
United States
¥ 2003
France.
¥ 2003
United Kingdom|
Canada &
United Kingdom Y2004
¥ 2003
o 2002 France
Y2004

United States
¥ 2002

Canada
¥ 2002

©v 2001

France fited Kingd
cv2002 | cv2002

United States anad
¥ 2001 200;

Sizing Measure:
Reseller Sales Amount
Coloring Measure

Reseller Gross Profit Margin
Grouping Hierarchy:
Date.Calendar

Grouping Level

Calendar Year

Details Hierarchy:
Geography.Geography
Details Level:

Country

Coloring Schema:

sot: [ene: [

View Heat Map

Legend
[39.19 % + 52.25 %
26,13 % + 39.19 %
D13.06

O 0.00
.75
.50
25
.99
.74
.45 %

o
o
o
=]
=

Properties Explorer
This feature allows the exploration of data by using its properties. The user can select dimension members and filter them based on their properties. For example: If “Employees” are selected, the user can easily compare sales and profitability based on whether the employee is hourly or salary based, or if the employee is married or not, or if the color of the cell phone is dark or light. The user can also filter members based on their properties values. For example, only products manufactured in 2010 and 2011 will be displayed that have hales over $1 Million. The displayed data is filtered FIRST by the selections in Instant, Measure and Dimension Filters.

There are several options for filtering the displayed data:

· The “Hierarchy” and the “Level” combo boxes are used for selecting the members to be displayed.

· The “Sort By” combo box allows the filtered members to be arranged in different order. This option will be applied AFTER the data is filtered. If the section is to sort the members by a measure, the sorting will be applied after the Measure Filter is enforced (if any). For example: the Measure filter may pick up the “bottom 100” products by Profit margin, but the “Sort By” with “Asc” will display them in ascending order based on the measure value.

· The “Group By” combo box allows the grouping of members based on the selected property. For example: the member can be grouped by their manufacturing Year.

· The “Zoom” combo box allows for various level of zooming for displaying the data.

· The “Displayed Nodes” combo box will filter out only N-number of members. This is applied AFTER the data is filtered. For example: only the bottom 100 products by Sales may be filtered, and then only the first 10 nodes will be displayed. This option is NOT used for pre-filtering the data; only for selecting how many nodes to be displayed from the member result set.

· The “Measure Filter” will only show if there is a filter based on measure values. Clicking on the filter icon will open the dialog box for configuring the Measure Filter.

· The “Show Tooltip” checkbox will enable tooltips when the mouse hovers over a member. This option should be avoided for larger result set since the tooltip builds a grid with all the properties values, which can be an expensive operation for large number of members.

· The “Explore” button rebuilds the displayed data.

The list on the left side contains all the properties and selected measures. The check box on each of the properties will hide or show this value in the list of displayed properties. Image data is fully supported and will be automatically displayed by default if an image property is found. Each property can be expanded and a range of values will be displayed. The user can change the selected range or/and selected items. This will create a filter that will be applied to the result set. For example: the user can select “Reseller Sales” to be between $100k and $200k, Manufacturing Year to be 1020, and “Reorder Point” to be below 50, and “Weight” to be over 100pounds. Only the members that meet the criteria will be displayed. This allows for easy analysis of items that are costly to keep in stock and are expensive to transport.

This visualization aid is commonly used for filtering members based on their properties, which is a feature that is NOT supported by SSAS. The Level selections and the options are NOT stored in the report definition and will NOT be recreated upon reopening the report. This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.
[image: image21.png]Hierarchy: | ProductProduct ~ | Level: | 'Product ~ | SortBy: | Default * | Asc ~ |GroupBy: None v |'Asc v

@ ~ 4 TopCount(Reseler Sales Amount;20) Show Tooltp

Explore

> Days to Manufacture — pr— —

> Dealer Price ->
Terdoe

> Large ot v

e ¥ ¥

e —_— =

— T e A e
——— T

w————
s) Y ¥ ¥

> Weight

3D Explorer
This feature allows the exploration of data in its native multi-dimensional format. Dimensions, hierarchies, or/and levels can dragged from the metadata tree with the mouse and placed on Axis X, Y and Z. Once all axes are populated, the 3D cube with the data will be displayed. The cube can be rotate and moved with the mouse; zoomed in and out with the mouse wheel; drilled down and up by mouse clicking on the spheres and selecting from the context menu. Hovering the mouse pointer over a sphere will display a tooltip with the coordinates and the measures values of the data point in the 3D space. The “X”,”Y”, and “Z” letters on the size of the cube represent the different Axes and their directions.

The spheres represent the values of the currently selected measures. The larger the sphere, the higher the amount. The color indicates if a value is positive (green) or negative (red). The displayed data is filtered by the selections in Instant, Measure and Dimension Filters.

There are several options for formatting the displayed data:

· The “Zoom” slider allows the cube to be zoomed in and out.

· The “X”,”Y”, and “Z” sliders will rotate the cube along its three Axes. The “Center” button will reset the position of the cube. Double-clicking on the slider selector will reset the value to its default.

· The “Use One Color” checkbox will control if the spheres will be displayed in Green and Red, or in multiple colors.

· The “Show Caption” checkbox will display the spatial coordinates of each Sphere. The “Caption Font Size” option can change the font size.

· The “Show Value” checkbox will display the measures values of each data point. The “Value Font Size” option can change the font size. The font color is based on the cube definition.

· The “Show Axis Caption” checkbox will display the labels of the Axes

· The “Show Spheres” checkbox will control the visibility of the spheres.

· The “Value Based Size” checkbox will control whether the sphere size is based on the measure value in comparison to its peers.

· The “Value Based Opacity” checkbox will control the transparency of the sphere based on the measure value in comparison to its peers.

· If the “Multi Measures” checkbox is checked all measures values will be displayed at the same time, embedded in each other with the smallest one being on top. If it’s unchecked then only a single measure will be displayed; two extra options will appear that allows the user to select which measure should be used for sphere size and which one for opacity.

· If the “Pan” checkbox is checked, the mouse is used for dragging the cube. If it’s unchecked, the mouse is used for rotating the cube.

· The “Refresh” button will rebuild the cube.

This visualization aid is commonly used for analyzing the distribution of the data in the selected sub-cube space. Clicking on the spheres will allow for an easy drill downs and ups of the selected dimensions. The Instant Filters can also be used for quickly filtering the data and visualizing the resulting data. The Auto-play option can also create an animated filtering and refresh of the displayed data. The Axes selections and the options are stored in the report definition and will be recreated upon reopening the report. This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.

[image: image22.png]L
~ options

L% Geography->Geography
Ly Date-sfiscal
172 Product->product Categories

44 TopCount(Reseller Sales Amount, 20)

Zoom

Useonecolor \,
m

‘Show Caption

Caption Font Size.

X aods: United Kingdom |

=
Show Value [
VeieFontsie 10 3
Show Axis Caption
ShowSpheres \,
Value Based Size
Value Based Opacity

Mult Messures \s
Pan |
= Refresh =)

Measure Explorer
This feature allows the exploration of values distributions in a given Measure by slicing it with multiple Dimensions. Multi-level pie chart with path tracking is used for visualization. The user can select the measure from the combo box. The displayed data is filtered by the selections in Instant, Measure and Dimension Filters. The center of the chart represents the measure total within the context of the selected filters (if any).

The user can use the mouse to move the chart or to zoom in and out with the mouse wheel. Hovering the mouse pointer over a sphere will display a tooltip with statistics. Clicking on a given level will display a context that allows the user to:

· Add further slice the data by selecting a hierarchy level. For example, if the measure is broken down by “Date->Year”, clicking and selecting “Geography->Country” will add another level to the pie chart, and will break down each Year Total by Country.

· Delete one or all level s

· Move a level to become the First or the Last one on the pie chart

· Drill down and up the level dimension

The coloring schema is used to facilitate the analysis of the data. All the children of the same parent are shaded in the same color. For example: all the country for Year 2010 will be displayed using the same color.

There are several options for formatting the displayed data:

· The “Zoom” slider allows the pie chart to be zoomed in and out.

· The “X”,”Y”, and “Z” sliders will rotate the pie chart along its three Axes. Double-clicking on the slider selector will reset the value to its default.

· The “Show Caption” checkbox will display the selected dimensions for each level. The “Caption Font Size” option can change the font size.

· The “Show Value” checkbox will display the measure value of each pie chart slice. The “Value Font Size” option can change the font size. The font color is based on the cube definition.

· The “Animate” checkbox will trigger animation during the display of the newly-rendered pie chart.

· The “Magnify on Click” checkbox will create the effect of a magnifying glass when the user clicks on the chart. It is useful for easier reading of busy pie charts with a lot of slices and displayed values.

This visualization aid is commonly used for slicing a single measure by multiple dimensions. Clicking on a chart slice will allow for an easy drill downs and ups of the selected dimension. The Instant Filters can also be used for quickly filtering the data and visualizing the resulting data. The Auto-play option can also create an animated filtering and refresh of the displayed data. The Level selections and the options are stored in the report definition and will be recreated upon reopening the report.

This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.

[image: image23.png]~ [Options

£ TopCount(Reseller Sales Amount, 20)

Reseller Sales Amount =
Zoom

x

v

z

Show Caption \

Caption Font Size 10 &
Show Value

Value Font Size

Animate

Magnify on Click

v 2003
Australia

Reseller Sales Amount
$847,430.96

roenzins

weight: 2.63 %

Dimension Explorer
This feature allows the exploration of values distributions in a given Dimension Hierarchy by drilling up and down its levels. Snowflake chart is used for visualization. The user can select the hierarchy by dragging it from the metadata tree and dropping it on the “X” placeholder. The displayed data is filtered by the selections in Instant, Measure and Dimension Filters. The center of the chart represents the measure total within the context of the selected filters (if any). Different measures can be selected to represent the sphere size, sphere shading, and the thickness of the arrows connecting the center to the spheres.

The user can use the mouse to move the chart or to zoom in and out with the mouse wheel. Hovering the mouse pointer over a sphere will display a tooltip with statistics. Clicking on the center will trigger a drill up; clicking on the surrounding spheres will trigger a drill down.

The coloring schema is used to facilitate the analysis of the data. The Green color represents positive values; the Red color – negative values. The connecting line thickness, sphere size and shading are based on the measure value in comparison to its peers. This allows for easy visualization of dependencies between measures for each selected member. For example: “Reseller Gross Profit” is used for “Sphere Size”, “Reseller Sales Amount” is used for “Sphere Shading”, and “Discount Amount” is used for “Arrow Size”. The resulting snowflake chart and coloring schema will highlight areas where big discounts were given with resulting little profit margins even though the sales were high.

There are several options for formatting the displayed data:

· The “Zoom” slider allows the pie chart to be zoomed in and out.

· The “X”,”Y”, and “Z” sliders will rotate the pie chart along its three Axes. Double-clicking on the slider selector will reset the value to its default.

· The “Show Caption” checkbox will display the member associated with each connection line. The “Caption Font Size” option can change the font size.

· The “Show Value” checkbox will display the measure value of each pie chart slice. The “Value Font Size” option can change the font size. The font color is based on the cube definition.

· The “Magnify on Click” checkbox will create the effect of a magnifying glass when the user clicks on the chart. It is useful for easier reading of busy pie charts with a of slices and displayed values.
· The “Sort” checkbox will sort the data in ascending or descending order.

This visualization aid is commonly used for analyzing a given dimension hierarchy by multiple measures. Dependencies between level members and measure values can be quickly discovered. Clicking on a sphere will allow for an easy drill downs and ups. The Instant Filters can also be used for quickly filtering the data and visualizing the resulting data. The Auto-play option can also create an animated filtering and refresh of the displayed data. The Level selections and the options are stored in the report definition and will be recreated upon reopening the report.

This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.
[image: image24.png]~ optons

1% Geography->Geography->United States
Sphere Size

Sphere Shading o

Arrow Size

ool)
X
v
2

[« Je Ju]

Show Caption
Caption Font Size
Show Value
Value Font Size

Magnify on Click
Sort

Clusters Explorer
This feature allows the exploration of data clustering. Bubble chart is used for visualization. One of the selected measures is used for charting values on Axis X, one of the measures is used for the size of the chart data points, and the rest of values are charted on primary and secondary Axis Y. For example, the user can place the four measures: “Sales Amount” on “Axis X”, “Discount Amount” on primary Axis Y, “Profit Margin %” on secondary Axis Y, and use “Order Count” for the shape size (see snapshot below), and figure out if giving discounts will increase the revenue, and if the results will be consistent over the years, over the different product categories, and over promotion types. The charting of this data will allow easy visualization of where the data clusters and how the chart can be split into different quadrants.
Each series can be displayed in user-selected color and shape. Theming and multiple customization options are fully supported. The formatting of the displayed values is based on the cube measure definition. The charted data is based on the current user selection so there is no need for additional steps to start using this visualization. Instant, Dimension and Measure filters are automatically applied to the displayed data.
The user can use the mouse to select and expand a chart section, or to zoom in and out with the mouse wheel. Hovering the mouse pointer over a sphere will display a tooltip with statistics. The scrollbar on Axis X can also be resized so the width of the chart will be increased for more details. Clicking on the chart shapes will display a context menu with several options:

· Change the charting color of the clicked series

· Chart the charting the series on primary or secondary Y Axis

· Bring the series to front or send it back compared to the other series

· Change the shape used for drawing the data points of the clicked series

· Add or remove Trend lines, which also allows quadrant creation and highlighting

· Display chart options that can control the overall formatting of the chart. The options are the same as the regular chart options.

· Provide a list of options that can drill up and down the dimension members of the clicked data point.

This visualization aid is commonly used for discovering clusters of data points based on selected measures and dimensions. The Instant Filters can also be used for quickly filtering the data and visualizing the resulting data. The Auto-play option can also create an animated filtering and refresh of the displayed data. The Measure selections and the options are stored in the report definition and will be recreated upon reopening the report.

This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.
[image: image25.png]eseller Order Quantity

ler Gross Profit Margin

Canada, FY 2004, D

Discount Amount:

Reseller Sales 45,682,949
Reseller Order Quantity: 19,907

Canada, FY 2004, Reseller Gross Profit Margin
Reseller Gross Profit Margin: -0.37%
Reseller Sales Amount: ~$5,682,949.64
Reseller Order Quantity: 19,907

<L
~s978,054.2 $4,02/$5,682,049.64 $3,021,545.71 $14,021,985.71 519,021,945.71

Geography->Geography, Reseller Sales Amount

8 v 2002 Discount Amount () P 2002, Reseler Gross ront Margin () Y 200, Discount Amcunt () FY 200, Rl Gross Prft Margin

() 72004, Discount Amount () FY 2004, Resalr Gross Proft Magin

Dashboard
This feature allows the user to store items of interest for faster later retrieval. Only two types of items can be currently stored. Both of them are created when a cell in the Table is clicked and one of the two options, “Show for <Member>” and “Show As Floating Window + <Function>”, is selected. The resulting floating window will contain either the statistics for the selected member (i.e. “Canada”) or a chart with the data created by selecting a function (i.e. “Ranking”). If the “Pin” icon in the title bar of the floating window is clicked, the window will be sent to the Dashboard. If a window is inside the Dashboard, the “Pin” icon will detach it and make if floating. The Dashboard content is stored in the report definition and will be recreated upon reopening the report.

This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration.

[image: image26.png]Canada, All Periods, Reseller Tax Amount # | United states, Al Periods, Sales Amount Quota 40

Refresh Refresh

Name: Ccanada Name: United States

Reseller Tax Amount: $1,150,234.02 Salles Amount Quota:

Parent: $6,436,047.61 Parent: $114,253,550.00

Percent OF Parent: 17.87% Percent OF Parent:

Last Activity Date: June 1, 2004 Last Activity Date:

Last Activity Value: $46,815.76 | Last Activity Value: =
$2.208,085.41

Canada Siblings * All Periods-> Geography % Reseller Sales Amount * 0

Refresh

0%
e

so%

0%

a0% Series: All Periods, Geography % Reseller Sales Amount

- B Category: Canada

20 Value: 17.87%; Weight: 17.87%

10% ez

ustralia Canada France Germany United Kingdom United States

Parse Tree
This feature allows the visualization of the MDX statement as a tree. Each leaf represents an object (i.e. Member, Measure, Set). Each brunch represent an operation or function that involves one or more leaves or other brunches. The user can click on different nodes and generate an MDX that is automatically executed and the results are displayed in the grid. The MDX is displayed in the Generated MDX tab under the MDX Panel. The tree is usually used for analyzing different sections of the original MDX statement.

This feature is credited to Mosha Pasumansky and is distributed with his explicit permission. The feature can be shown or hidden from the site configuration options. See the “Setup” Help topic for more information.

[image: image27.png]e,

% parse Tree
4 fyseLect
4 mwm
Pl [sorted set]
4 [ierarchize
JoisTiner

)

Yierarchize
) AddCalculatedMembers
)
‘@ [Geography].[Geography].[All Geographies]
4 (Jchidren
‘@ [Geography].[Geography].[All Geographies]

4 [es
4 1 axis(0)
4 hnow ewery
4 [ierarchize
}Crossaain
JoisTiner
2]
4 [erarchize
4 () AddCalculatedMembers
s
@ [Date].[Fiscal].[All Periods]
4 (Jchildren
@ [Date].[Fiscal].[All Periods]

Py
‘@ [Measures].[Reseller Sales Amount]
‘@ [Measures].[Reseller Gross Profit Margin]
‘@ [Measures).[Discount Amount]
‘@ [Measures).[Reseller Order Quantity]
4 ais(1)
4 (-} on EmpTY
)
@ [sorted set]
(@ FROM [Adventure Works]
4 7 CELL PROPERTIES
Q@ CELL_ORDINAL
@ vaLuE

MDX Panel
This feature provides the user with various functionality and information. The tabs at the top are:

· ”MDX” contains the generated MDX based on the user-selection. The text is parsed and color coded. The user can copy, paste, and modified the MDX. The “Execute MDX” button to the left will execute the currently contained MDX. The “Build MDX” will force the recreation of the MDX using the current user selection of objects and filters. The “Format MDX” button can be used to reformat the text. The “Query Check” will inspect the MDX and make any suggestions for improving it. The formatting, parsing and query checking logic is credited to Mosha Pasumansky and is distributed with his explicit permission.

· “Generated MDX” contains the MDX generated by clicking on the Parse Tree nodes. It can be formatted and executed just like the “MDX” text described above.

· “Errors” will contain any issues during the execution and rendering of the different user interface elements.

· “Query Check Results” will display any suggestions found by running the “Query Check” button.

· “Event Log” will display execution statistics such as: response times from the server, response parsing times, object creation times, rendering times, etc.

· “Parse Xmla Response” provides the option of executing or/and parsing a raw XMLA response from the server and displaying the results in the grid. The user can capture with a HTTP traffic monitor a problematic statement and its response from the server, paste it here and with the “Parse” button display the results in a grid. This can be very useful for troubleshooting rendering issue. It is usually used by support people but it can also be used for rendering Xmla responses, captured in other applications (i.e. SSMS), and visualizing the results. The “Xmla Response” textbox will contain the last response received from the server. If an error occurs, getting the last response and emailing it to support will expedite the issue resolution. The last request will be pasted under the “Xmla Request” textbox. Note: Since the BIC is a multi-threaded application it can do several tasks concurrently. Depending on timing, the last request and response may be coming from a background thread and may not represent what the user has last performed.

· “Help” displays this page.

This feature can be shown or hidden from the toolbar. The feature can be completely disabled by a server configuration. See the “Setup” Help topic for more information.

[image: image28.png]SET [sorted set] AS.
Hierarchize
«
(orsTineT
<
Hierarchize
«
AddCalculatedMembers
«
<
[Geography].[Geography]. All Geographies]
eography].[Geography.[All Geographies].Children

seLecT
NON EMPTY

Appendix A – MDX Syntax
	Function and Operator Reference

Source: “MDX Solutions With Microsoft SQL Server Analysis Services 2005 and Hyperion Essbase”, Second Edition Book
A
Abs(numeric_expr) Returns: number

Extension: Essbase

Returns the absolute value of expr, and NULL if expr is NULL.

AddCalculatedMembers(set) Returns: set

Extension: AS2000, AS2005

By default, when a set of members is specified using a function that retrieves a set based on metadata (such as .Members, .Children, Descendants(), and so on), only base members are returned, even though calculated members may be within that range. The AddCalculatedMembers() function adds in all of the calculated members that are siblings of the members specified within the set. Each calculated member that was not already in the set is added in database order after its last sibling member in the set. The set is limited to only one dimension. Note that this function adds all calculated members defined, whether they were defined by CREATE MEMBER at the server or at the client, or in the query through WITH MEMBER.

See also: .AllMembers, StripCalculatedMembers()

Aggregate(set [, numeric value expression]) Returns: number

Standard (not in Essbase 9)

This function aggregates the cells formed by the set according to the default aggregation operator for any measures in context. If a numeric value expression is provided, then this function sums the expression’s set of values over the cells. In the event that the cells are of a base measure, the aggregation function specified for the measure is used. In AS2000, if the aggregation functions of the measure is COUNT, MIN, or MAX, then COUNT, MIN, or MAX, respectively, is the aggregation operation used; otherwise, the aggregation operation used is summation. In AS2005, the list of intrinsic measure aggregation functions with which the Aggregate() function will work is much longer, including:

Sum

AverageOfChildren

ByAccount

Count

FirstChild

FirstNonEmpty

LastChild

LastNonEmpty

Max

Min

DistinctCount

Aggregate() will not aggregate measures whose aggregation function is None, however.

Note

Although you may specify an expression to be evaluated by this function, this function does not work if you use calculated members as its inputs. (If a calculated member “M” has a higher SOLVE_ORDER than a calculated member on a different dimension that is performing the Aggregate(), then “M” will use the results of the aggregating member.)

· This comes in handy when you have a set of different measures with different aggregation rules that are all being queried for. Calculated members performing period-to-date aggregations as well as aggregations on other dimensions will often be best constructed out of this operator. (Essentially, this is the implicit operation carried out within Analysis Services’s hierarchies.) Consider the following calculated member:

· CREATE MEMBER [Time].[MonthsOf2006ToDate] AS

'Aggregate ({[Time].[Jan 2006] : [Time].[May 2006]})'

· When combined with a summing measure, this member will yield the sum of its values over the range of January through May 2006. When combined with a measure aggregating by MAX, this member will yield the MAX of its values over that same time period.

Note

In Analysis Services 2000, measures aggregated by DISTINCT COUNT cannot be aggregated by this function. This is fixed in Analysis Services 2005.

· See also: Sum(), Count(), Min(), Max(), Avg(), DistinctCount()

dimension.AllMembers

hierarchy.AllMembers Returns: set E,M2000,M2005

level.AllMembers

All return: set

All are extensions: AS2000, AS2005

· Generally, the .AllMembers functions are semantically equivalent to Add-CalculatedMembers(Scope.Members), but they provide a more intuitive syntax. Although the Microsoft documentation only refers to .AllMem-bers for dimensions and levels, we note that in the case of multiple hierarchies on a dimension, you can only use this against one hierarchy.

· The only case where .AllMembers and AddCalculatedMembers() differ is when no members are visible in the scope of [Dimension].Members, [Hierarchy].Members, or [Level].Members. This can occur on the measures dimension if all measures are hidden in a cube.

· The following two statements will generally return the same set:

· [Measures].AllMembers

AddCalculatedMembers([Measures].Members)

· See also: AddCalculatedMembers(), StripCalculatedMembers()

Ancestor(member, level) Returns: member

Standard

Ancestor(member, distance) Returns: member

Extension: Essbase, AS2005, AS2000

· This function finds the source member’s ancestor at the target level or distance. If the target level is the level of the source member, then the source member is returned. If a distance number is specified, it is the number of hierarchical steps above the member. A distance of 0 will return the source member. The behavior of Ancestor() is shown in Figure A-1.

[image: image29]
Figure A-1: Behavior of Ancestor().

· See also: Descendants(), .Children

Ancestors(member, level) Returns: set

Standard. (Essbase has same syntax, but different behavior)

Ancestors(member, distance) Returns: set

Standard. (Essbase has same syntax, but different behavior)

Note

Essbase implements a different semantics for the function named Ancestors, although the function signature is exactly the same as the standard.

· The standard and Microsoft implementations of this function find the set of ancestors for the source member at the target level. If the database supports multiple parents for a single member in a hierarchy (as Applix TM1 does), then this function may return multiple members. Other databases (like Microsoft Analysis Services) will return a set of one member. If the target level is the level of the source member, then the source member is returned as a set.

· The target level can be expressed either by name as a string expression or by distance as a numeric expression where 1 represents a parent, 2 represents a grandparent, and so on. Using 0 as a distance will return the member itself.

· Note that although this function in theory may return multiple ancestors, the ancestors must be from the same hierarchy and the same level.

· In Essbase, this function returns the tree of ancestor members from the given member up to a higher level or generation, as indicated by the argument. If distance is specified, then the member and that number of ancestors will be returned. If layer is specified, then it returns all ancestors having a height from the leaves that is no greater than the layer.

See also: Ancestor(), Ascendants(), Descendants(), .Children

expr1 AND expr2 Returns: Boolean

Standard

· The AND operator returns true if both expr1 and expr2 are true, and false otherwise. In Microsoft Analysis Services, if expr1 is false, then expr2 is not evaluated (there is no need to; the result is guaranteed to be false); this may be relevant when expr2 could have side effects or is costly to evaluate.

Ascendants(member) Returns: set

Extension: AS2005, AS2000

· This function returns the full set of ancestors for the given member all the way up to the root of the hierarchy or dimension. The ancestors are ordered from the bottom up, so that parents follow children. The given member is included in the set. It is very useful in queries when you want to include all higher level totals for a given member or set of members. The behavior of Ascendants() is shown in Figure A-2.

[image: image30]
Figure A-2: Behavior of Ascendants().

· Note that the order of the resulting set must be changed by using Hierar-chize() to get a top-down ordered set before being used in conjunction with any of the drill-related or VisualTotals() functions.

· See also: Ancestor(), Ancestors(), Descendants(), .Children

Attribute(member_of_attribute_dim) Returns: set

Extension: Essbase

· This function takes a member of an attribute dimension and returns the base dimension members that it maps to. (Similar to the AS2005 Exists() function.)

· See also: WithAttr(), Exists()

Avg(set [, numeric expression]) Returns: number

Standard

· This function takes the average of the nonempty values found across cells related to the set. If a numeric expression is supplied, then its values are averaged across the cells in the set. Note that the average is formed out of the sum of the cells divided by the count of the nonempty cells. If you want to take the average over all cells, treating empty as zero, then you can either create a numeric value expression that converts missing to zero, or you can take the Sum() over the set divided by the Count() of the set, including empty cells.

· See also: Aggregate(), Sum(), Count(), Min(), Max()

Axis(Axis number) Returns: set

Extension: AS2005, AS2000

· This function returns the set of members or tuples that are included on a specified axis. Axis(0) returns the column tuples, Axis(1) returns the row members, and so on. This function is likely to be used most often in client applications when building queries. The following example uses Axis() in conjunction with Generate() and TopCount() to select the top two stores for each of the four quarters of 2006. Note that this statement will return results for all selected stores for each of the four quarters:

· SELECT

· Generate(

· Axis (1),

· TopCount(

· [Store].[Store Name].Members,

· 2,

· ([Measures].[Amount],

· Axis(1).Current)

·),

· ALL

·) on 0,

· {[Time].[2006].Children} on 1

FROM Sales

· You can use this set as the source for various set-related functions, such as .Count, Extract(), Distinct(), Except(), and so on. The .Item() function can be used as well. To use this function to select the top two stores based on the first member in the set down the rows, you would write the following:

· SELECT

· TopCount(

· [Store].[Store Name].Members,

· 2,

· ([Measures].[Amount],

· Axis(1).Item(0))

·) on 0,

· {[Time].[2006].Children} on 1

FROM Sales

· Regardless of which dimensions were involved in the rows, the query would work fine (so long as [Store] is not in the rows!).

However, the execution of a query (building the axes and calculating cell values) does not provide a context on its own for iterating over the tuples in the set. For example, the following results in an error with the message stating that .Current cannot be used in this context:

WITH

MEMBER [Measures].[Disp] AS

'[Measures].[Unit Sales]',

FORE_COLOR = 'iif (Axis(1).Current.Item(0).Level.Ordinal > 1, 0, 5)'

SELECT

{ [Time].[Quarter].members } on 0,

{ Ascendants ([Customers].[Name].&[2659]) } on 1

FROM Sales

WHERE [Measures].[Disp]

CELL PROPERTIES FORMATTED_VALUE, FORE_COLOR

· This can be explained by the fact that the filter is always evaluated first. However, the following will also fail with the same error:

· WITH

· MEMBER [Measures].[Disp] AS

· '[Measures].[Unit Sales]',

· FORE_COLOR = 'iif (Axis(1).Current.Item(0).Level.Ordinal .> 1, 0, 5)'

· SELECT

· { CrossJoin (

· [Time].[Quarter].members,

· { [Measures].[Disp] }

·) } on 0,

· { Ascendants ([Customers].[Name].&[2659]) } on 1

· FROM Sales

CELL PROPERTIES FORMATTED_VALUE, FORE_COLOR

B

BottomCount(set, index [, numeric expression]) Returns: set

Standard

· See the description for TopCount()

BottomPercent(set, percentage, numeric expression) Returns: set

Standard

· See the description for TopPercent()

BottomSum(set, value, numeric expression) Returns: set

Standard

· See the description for TopSum()

C

CalculationCurrentPass() Returns: number (integer)

Extension: AS2005, AS2000

· This returns the current pass number for which the expression is being calculated. Typically, this will be used with iif() to pick out a particular expression based on the pass number. The lowest pass number is 0. Calculated cells begin calculations with pass 1.

· See also: CalculationPassValue(), iif()

CalculationPassValue (numeric expression, pass number [, flag]) Returns: number

Extension: AS2005, AS2000

CalculationPassValue (string expression, pass number [, flag]) Returns: string

Extension: AS2005, AS2000

· This function evaluates the given expression at the calculation pass identified by pass number and returns the value to the current calculation pass. If the flag is specified, it may be one of the following:

FLAG

DESCRIPTION

ABSOLUTE

The pass number is the absolute number of a pass (starting from zero). If you refer to a pass number that is higher than the currently executing pass, you will begin invoking the higher numbered pass for the cells that are referenced in the expression if they have not already executed that pass.

RELATIVE

This indicates to take the value from the pass that was pass number passes later. A negative pass number will refer to an earlier pass, and a positive pass number will invoke a later pass. A pass number that would refer to a pass earlier than pass 0 will silently cause a reference to pass 0.

Note that in AS2005, passes for session-scoped cell calculations (created by CREATE CELL CALCULATION) and those for query-scoped cell calculations (created by WITH CELL CALCULATION) are separated, so that query, session and global passes (from MDX scripts) cannot refer to calculations in each other.

· See also: CalculationCurrentPass(), iif()

Call UDF-Name ([arguments]) Returns: Void or rowset

Extension: AS2005, AS2000

· This function executes a registered external function that does not return anything (that is, a procedure in Visual Basic). Data can be passed to the function as if it were any other external function. In AS2005, Call can return either nothing or a rowset. In AS2000, the Call itself will return an empty cell value. Unlike other MDX functions and operators, this one cannot be combined with any other operators or functions; when used in an expression, the sole contents of the expression will be the Call invocation. Here’s an example:

· Call MailMsgToUser (

· [Employee].CurrentMember.Properties ("Email Address"),

· "Look at department" + [Department].CurrentMember.Name

)

CASE

· CASE reference-expression WHEN test1 THEN result1
· [... WHEN testN THEN resultN]

· [ELSE DefaultResult]

· END

· Returns number, string (except Essbase), member, tuple, set, level, hierarchy, array (all AS2005 only)

· Standard (except AS2000)

· CASE WHEN textExpr1 THEN result1

· [... WHEN testExprN THEN resultN]

· [ELSE DefaultResult]

END

· Returns number, string (except Essbase), member, tuple, set, level, hierarchy, array (all AS2005 only)

· Standard (except AS2000)

This operator provides a multiway conditional test for values to return. It is similar to the iif() function, but can handle more conditions. The different implementations provide different capabilities.

The expression in the first form can be either a numeric expression or a string expression, and each test must the same type (numeric or string). Each test from test1 through testN is evaluated in sequence until the result of a test is equal to the reference-expression. When that happens, the corresponding result following the THEN clause is returned. If no test expression is equal to reference-expression, then the DefaultResult, if any, is returned. If none is specified, then the result of the function is NULL.

In the second form of CASE, each testExpr is evaluated as a Boolean expression in sequence until one evaluates as true. The result expression of the corresponding THEN clause is returned. If no testExpr evaluates to true, then the DefaultResult, if any, is returned. If none is specified, then the result of the function is NULL.

In AS2005, the type of result from any THEN clause can be different from that of any other THEN clause. A single CASE operator could return strings, numbers, and/or any of the other types listed depending on the reference-expression and/or test expressions. When no test evaluates to true and there is no default clause, a NULL is returned.

In Essbase, the results can either be all numeric or all set expressions. When the results are numeric, a MISSING value is returned if no other result or default expression is returned. When the results are sets, an empty set is returned if no other result or default expression is returned.

For both AS2005 and Essbase, this allows the CASE expression to serve as an axis expression or as the input to other functions that use sets, such as Avg() or Generate(). For AS2005, since CASE can return most MDX objects, you can write expressions such as the following, which uses the CASE construct to pick an attribute dimension whose members end up in a named set [ASet]:

WITH SET [ASet] AS

CASE

WHEN condition1 THEN [Customer].[Region]

WHEN condition2 THEN [Customer].[State]

ELSE [Customer].[City]

END.Members
...

· See also: CoalesceEmpty(), iif()

member.Children Returns: set

Standard

· This function returns the children of the given member. member.Children is equivalent to {member.FirstChild : member.LastChild}. As you might expect, if you apply member.Children to a leaf member, the result is no members (an empty set). Figure A-3 illustrates the behavior of the .Children function.

[image: image31]
Figure A-3: member.Children.

· See also: Ancestor(), Descendants(),.Parent, .Siblings

ClosingPeriod ([level [, member]]) Returns: member

Standard

· See description of OpeningPeriod()

CoalesceEmpty (value expression [, value expression . . .]) Returns: number or string

Standard

· This function evaluates the first value expression listed. If it is not NULL, then the value of that expression is returned. If it is NULL, then the second value expression is evaluated and it is returned if it is not NULL. Each subsequent expression, if present, is evaluated in turn; if the last one is NULL, the entire operator returns NULL.

· CoalesceEmpty() can either take all number-valued expressions and return a number or it can take all string-valued expressions and return a string.

· See also: iif(), IsEmpty(), CASE

Correlation (set, y numeric value expression [, x numeric value expression])

Standard (not in Essbase 9)

· This function calculates a correlation coefficient between x-y pairs of values. The y numeric expression is evaluated over the set to get the y values for each pair. If the x numeric expression is present, then it is evaluated over the set. Otherwise, the cells formed by the set are evaluated within the current context, and their values are used as the x values. The formula for the correlation coefficient is as follows:

[image: image32]
· If either the y or the x numeric expression is a logical or text value, or if the value is NULL, then that tuple and its related values are not included in the correlation. Zero values for y and x are included.

Count(set [, INCLUDEEMPTY | EXCLUDEEMPTY]) Returns: number (integer)

Extension: AS2005, AS2000

Count(set [, INCLUDEEMPTY]) Returns: number (integer) Standard (except by AS2005 and AS2000)

· This function counts the cells in the range formed by the set (as opposed to counting the tuples in the set). In Analysis Services, without the INCLUDEEMPTY flag, only nonempty cells are counted; with the flag, all cells are counted. INCLUDEEMPTY is the default. In Essbase, the function returns the count of cells regardless of whether the INCLUDEEMPTY is specified or not. (You must use Hyperion’s NonEmptyCount() to count nonempty tuples.) In the standard, only nonempty cells are counted, unless the INCLUDEEMPTY flag is specified.

· See also: .Count, Sum(), Avg(), DistinctCount(), NonEmptyCount()

Set.Count Returns: number (integer)

Extension: AS2005, AS2000

· This function counts the tuples present in Set. It is equivalent to Count (Set, INCLUDEEMPTY) but is syntactically simpler.

· See also: Rank(), Count(), Avg(), Set.Item()

Tuple.Count Returns: number (integer)

Extension: AS2005, AS2000

· This function counts the dimensions present in Tuple.

· See also: Tuple.Item()

Cousin(member, ancestor_member) Returns: member

Standard

· This function returns the member that has the same relative position under a specified ancestor member as the initial member specified. The Cousin() function is best understood by walking through its algorithm. Figure A-4 shows the behavior of the Cousin() function. From the mem-ber’s level to the ancestor_member’s level, Cousin() tracks which sibling it is related to under its ancestor at that level. [March 2001] is the third child of the first child of [2001]. The same path is then followed from the ancestor member down to the level of member. [March 2002] is the third child of the first child of [2002]. Because of the straightforwardness of this algorithm, it works best when you can guarantee the same number of descendants under each ancestor. For example, it is likely that years, quarters, and months or days, hours, and minutes can be used with Cousin(), because each of these levels has a fixed relationship within itself. However, a cousin of January 31 in February will not exist because February will not have a thirty-first day.

[image: image33]
Figure A-4: Cousin() function.

· See also: ParallelPeriod(), PeriodsToDate()

Covariance(set, y numeric expression [, x numeric expression]) Returns: number

Standard (not in Essbase 9)

CovarianceN(set, y numeric expression [, x numeric expression]) Returns: number

Standard (not in Essbase 9)

· Covariance() calculates the population covariance and uses the biased population formula (dividing by the number of x-y pairs). CovarianceN() calculates the sample covariance and uses the unbiased population formula (dividing by the number of x-y pairs minus 1). If either the y or the x numeric value expression is a logical or text value, or if the value is NULL, then that tuple and its related values are not included in the correlation. Zero values for y and x are included.

· These functions calculate the statistical covariance across x-y pairs of values. The y numeric expression is evaluated over the set to get the y values for each pair. If the x numeric expression is present, then it is evaluated over the set. Otherwise, the cells formed by the set are evaluated within the current context, and their values are used as the x values. The biased population formula for covariance is as follows:

[image: image34]
CrossJoin(set1, set2) Returns: set

Standard (additional behavior in AS2005)

set1 * set2 Returns: set

Extension: AS2005, AS2000

· These functions return a set forming the Cartesian product of the two sets (except for a Microsoft extension to the semantics noted below). The two sets must represent different dimensions; you will get an error if the same dimension appears in both of them. CrossJoin() only takes two sets as arguments. However, because it takes two sets as input and returns a set as its output, you may nest multiple calls to CrossJoin() to take the Cartesian product of three or more dimensions. Following the same rules used for composing tuples by hand, the order of the dimensions in the resulting tuples is the same as the order of dimensions in the set arguments. Using an asterisk between two sets, as with {set1 * set2}, is a Microsoft-specific synonym for CrossJoin(). The expression set1 * set2 * set3 is the same as CrossJoin(set1, CrossJoin(set2, set3)).

· In Analysis Services 2005, if the two sets are composed of tuples from the same base dimension but different attribute hierarchy-dimensions, then only the combinations of tuples that actually exist in the underlying dimension are returned. There is no way to produce tuples that do not have corresponding entries in underlying tables.

· See also: Extract(), Generate(), Distinct(), NonEmptyCrossJoin()

Set.Current Returns: tuple

Standard

· This function returns the current tuple from a set within an iteration over the set. set.Current is only valid while there actually is an iteration occurring over the set. It returns a full tuple from the set. The set needs to be named, and can be either a set alias or a named set.

· See also: .CurrentMember, .CurrentTuple, Generate()

dimension[.CurrentMember] Returns: member

Standard

· This function returns the current member in that dimension. “Current” is relative to the context that the calculation is taking place in. That context may be the axis of a query being executed or a Generate() function within that query. We indicate that .CurrentMember is optional. The default operator applied to a dimension is .CurrentMember.

· Note that the MDX specification states that .CurrentMember may be applied to any set to return the current tuple. Both Analysis Services and Essbase restrict the application of this operator to a set that has a single dimension, which will then return a single member. The .Current operator is applied to an arbitrary set to retrieve a tuple.

· In Analysis Service 2005, keep in mind that the current member of an attribute dimension is influenced by the “current” members of other related attribute dimensions and the underlying base dimension.

Note

In Essbase, the name of the dimension is the same as the name of the top member of that dimension, so .CurrentMember is not optional. Using dimension alone is treated as a reference to the root member of the dimension

See also: .Current, .CurrentOrdinal

set.CurrentOrdinal Returns: number

Extension: AS2005

This function returns the current iteration number within a context that iterates over set. The Filter() and Generate() functions provide an appropriate iteration context. Functions like Sum() and Order() do not. The set must be an alias name — it cannot be a named set.

· See also:. Current, .Current Tuple, .CurrentMember

set.CurrentTuple Returns: tuple

CurrentTuple (set) Returns: tuple

Extension: Essbase

· This function returns the current tuple of set being iterated over. Useful from a context that provides a notion of iteration, such as Generate() or Filter(). The set should be a named set or a set alias. Note that Microsoft Analysis Services supports .Current instead of .CurrentTuple.

· See also: .Current, .CurrentMember

CustomData Returns: string

Extension: AS2005

· This function returns the current value of the CustomData connection property. If this property was not set, then the function returns NULL. This can be used to pass in one arbitrary configuration setting to be used by MDX functions.

· See also: UserName, Call()

D

Member.DataMember Returns: member

Extension: AS2005, AS2000

· This function returns the system-generated data input member associated with a member (as opposed to the input data). In AS2000 this function generally applies to parent-child dimensions where data is input at the parent level and also calculated by aggregating the parent’s children. In AS2005, you can use this on any hierarchy. The following example produces both the input individual salary and the aggregated organizational salary for each employee:

· WITH MEMBER [Measures].[Individual Salary] AS

· '([Employees].CurrentMember.DataMember, [Measures].[Salary])'

· SELECT

· { [Employees].Members } on columns,

· { [Measures].[Salary], [Measures].[Individual Salary] } on rows

FROM HRCube

· Note that when using the UPDATE CUBE command, the .DataMember function enables you to write data to the actual member, as opposed to the member’s leaf descendants.

dimension.DefaultMember

Standard

hierarchy.DefaultMember

Standard

· Each of these returns the default member for the dimension or hierarchy. If the dimension has an All level and member, then the default member is the All member. If the dimension does not have an All member, then an arbitrary member from its top level will be the default member. Microsoft Analysis Services also allows you to override these defaults at the server or through their ALTER CUBE UPDATE DIMENSION command.

· See also: .CurrentMember

Descendants (member, [level [, desc_flag]])

Standard

Descendants (member, distance [, desc_flag])

Standard

· This function returns a set of descendants of the given member using the indicated level, or numeric distance from the specified member’s level, as a reference point. The desc_flag parameter is used to pick from the many possible sets of descendants. If no level or desc_flag is provided, then the member and all of its descendants are returned. Figures A-5 through A-12 illustrate the behavior of the Descendants() operator. The flags are:

SELF

SELF_AND_AFTER

AFTER

SELF_AND_BEFORE

BEFORE

SELF_BEFORE_AFTER

BEFORE_AND_AFTER

LEAVES

· [image: image35]
Figure A-5: Behavior of descendants() with SELF FLAG.

· [image: image36]
Figure A-6: Behavior of descendants() with AFTER flag.

· [image: image37]
Figure A-7: Behavior of descendants() with BEFORE flag.

· [image: image38]
Figure A-8: Behavior of descendants() with SELF_AND_AFTER flag.

· [image: image39]
Figure A-9: Behavior of descendants()with SELF_AND_BEFORE flag.

· [image: image40]
Figure A-10: Behavior of descendants() with BEFORE_AND_AFTER flags.

· [image: image41]
Figure A-11: Behavior of descendants() with SELF_BEFORE_AFTER flags.

· [image: image42]
Figure A-12: Behavior of Descendants() with LEAVES flag.

SELF refers to the level listed as the second argument and means to take the members at that level. AFTER refers to the level or levels that appear below the level listed as the second argument. BEFORE refers to the level or levels that appear above the level listed and below the member given as the first argument. The BEFORE_AND_AFTER, SELF_AND_ AFTER, SELF_AND_BEFORE, and SELF_BEFORE_AFTER flags combine these basic options, as shown in Figures A-5 through A-12.

· The LEAVES flag is used in conjunction with a depth number and is intended for use with ragged and parent-child hierarchies. If a depth number is specified without LEAVES, then only members that are at that depth are returned. If a depth number is specified with LEAVES, then any leaf members encountered up to that depth are retained. In Analysis Services, you can request leaf-level members regardless of their depth by leaving the depth argument empty. The following would perform that:

· Descendants (

· [Accounts].CurrentMember,

· , /* empty */

· LEAVES

)

· In Essbase, you don’t need to use LEAVES, since you can request leaf-level members by referring to the dimension’s level 0 (remember that in Essbase, levels refer to heights while generations refer to depths). The following would retrieve leaf-level members in Essbase:

· Descendants (

· [Accounts].CurrentMember,

· [Accounts].Levels (0)

· /* LEAVES is optional at this point */

)

· If no flag is specified, the default behavior is SELF.

· See also: Ancestor(), Ancestors(), Ascendants(), .Children

Hierarchy.Dimension Returns: dimension

Extension: AS2005, AS2000

· This function returns the dimension that the hierarchy is in. Because Microsoft Analysis Services 2000 and, to some degree, 2005 semantically treat different hierarchies as different dimensions, this function is essentially a “no-op” in those products.

Level.Dimension Returns: dimension

Extension: AS2005, AS2000, Essbase

· The function returns the dimension that contains Level.

Member.Dimension Returns: dimension

Extension: AS2005, AS2000, Essbase

· This function returns the dimension that contains Member.

Dimensions(numeric expression) Returns: dimension

Extension: AS2005, AS2000

· This function returns the dimension whose zero-based position within the cube is numeric expression. Note that the Measures dimension is always Dimensions(0), while the order of the other dimensions depends on the order in which they were added to the cube when it was being constructed (and/or modified).

Dimensions(string expression) Returns: dimension

Extension: AS2005, AS2000

· This function returns the dimension whose name is given by string expression.

· See also: Dimension.Name

Distinct(set) Returns: set

Standard

· This function removes any duplicates from the set. The first instance of each tuple is retained in the order in which it appears.

· See also: DistinctCount(), Except(), Extract()

DistinctCount(set) Returns: number (integer)

Extension: AS2005, AS2000

· This function counts the distinct, nonempty tuples in a set. It is equivalent to Count (Distinct (set),EXCLUDEEMPTY). Only a measure can use this function. If you define a calculation on another dimension that uses DistinctCount(), you will get a syntax error. (If you want this functionality on another dimension, you can use the equivalent Count(. . .) expression.)

· When this function is used to calculate a cell, the distinct tuples in set are determined, and the nonempty cells formed by intersecting those tuples with the current member in every other dimension are counted. This function can be used to simulate the DistinctCount measure aggregation type in Analysis Services, but its strength is when you want the distinct count along only a subset of cube dimensions (one or two), when you are limiting the scope within the dimensions, when you are taking the distinct count at aggregate members in one or more of the dimensions, or when one or more dimensions involve a calculated member. Remember that the DistinctCount aggregation is handled to some degree by the server during cube aggregation, while this function is calculated at client query time.

· See also: Distinct(), Count(), .Count

DrillDownByLayer(set [, { layer | index }]) Returns: set

Extension: Essbase

· See definition of DrillDownLevel. DrillDownLevel() can be used as a synonym for DrillDownByLayer() in Essbase. When a numeric index is provided, a set containing multiple dimensions has the dimension in the index tuple position drilled down on. Index value 0 is the first dimension. If the set contains only one dimension, then only an index value of 0 is valid.

· See also: DrillUpByLayer(), DrillUpLevel()

DrillDownLevel(set [, level]) Returns: set

Standard

· This function returns a set resulting from a particular drill-down operation performed by the function. Set can be of arbitrary dimensionality. When the level argument is specified, all members or tuples in set that are in level are drilled down into the next lowest level (if there is one). When the level argument is not specified, only those members or tuples that are at the lowest level in the first dimension of the set are drilled down into, and they are drilled down into the next lower level. The behavior of DrillDownLevel() is shown in Figure A-13. All children are inserted immediately after their parents; otherwise, the order is preserved. If level is specified, but there is no member at level in the set, then the given set is returned without modification.

[image: image43]
Figure A-13: DrillDownLevel().

· In Essbase, the layer can be a generation or level specification.

Note

If one or more children of a member to be drilled down into immediately follow a parent in set, then that parent will not be drilled down into.

DrillDownLevel(set, , index) Returns: set

Extension: AS2005, AS2000

· This variation is a Microsoft – specific extension to DrillDownLevel(). It enables the dimension to be drilled down into by leaving the level field empty and providing a zero-based dimension index to specify which dimension should be drilled down into. This is really only useful when set has tuples with more than one dimension. The first dimension to drill down into is at index 0, the second dimension is at index 1, and so on. As with the rules for the standard version of DrillDownLevel(), tuples containing the lowest level members of that dimension are drilled down into.

Note

If one or more children of a member to be drilled down into immediately follows a parent in set, then that parent will not be drilled down into.

DrillDownLevelBottom(set, index [,[level] [, numeric expression]]) Returns: set

Standard (not in Essbase 9)

· Similarly to DrillDownLevel() and DrillDownLevelTop(), this function drills down through all members in the set that are at the specified level, if the level is provided (or the lowest level of members that are present in the set if level is not provided). However, instead of returning all children, this function returns only the bottom index members or tuples. The set can be of arbitrary dimensionality. The ranking is determined through the numeric expression, if one is provided, or through the values of cells found in the default context when the set is evaluated, if the numeric expression is left out. Figure A-14 illustrates the behavior of Drill-DownLevelBottom().

[image: image44]
Figure A-14: DrillDownLevelBottom().

Note

If one or more children of a member to be drilled down on immediately follow a parent in the set, then that parent will not be drilled down into.

DrillDownLevelTop(set, index [, [level] [, numeric expression]]) Returns: set

Standard (not in Essbase 9)

· Similarly to DrillDownLevel() and DrillDownLevelBottom(), this function drills down all members in set that are at the specified level, if the level is provided (or the lowest level of members that are present in the set if level is not provided). However, instead of returning all children, this function returns only the top index members or tuples. The set can be of arbitrary dimensionality. The ranking is determined through the numeric expression, if one is provided, or through the values of cells found in the default context when the set is evaluated, if the numeric value expression is left out. Figure A-15 illustrates the behavior of DrillDown-LevelTop(). As with DrillDownLevel(), if a member at level is immediately followed by one of its children, it will not be drilled down on.

[image: image45]
Figure A-15: DrillDownLevelTop().

Note

If one or more children of a member to be drilled down into immediately follows a parent in set, then that parent will not be drilled down into.

DrillDownMember(set1, set2 [, RECURSIVE]) Returns: set

Standard

· This function returns a set that is formed by drilling down one level on each member in set1 that is present in set2. Set1 can be of arbitrary dimensionality; set2 must be of only one dimension. The ability of set1 to consist of more than one dimension is an extension to the OLE DB for OLAP specification.

· If set1 contains tuples, this function will return a set that is formed by drilling down each tuple in set1 that has a matching member from set2 in it. If RECURSIVE is not specified, then only one pass through set1 is performed, matching each member or tuple with each member in set2. If RECURSIVE is specified, then the set resulting from the first pass is again matched with each member in set2, and so on until no more members in the set being constructed are found in set2. Figure A-16 illustrates the behavior of DrillDownMember().

[image: image46]
Figure A-16: DrillDownMember().

Note

If one or more children of a member to be drilled down into immediately follows a parent in set, then that parent will not be drilled down into.

· See also: DrillUpMember()

DrillDownMemberBottom(set1, set2, index [, numeric expression][, RECURSIVE]) Returns: set

Standard (not in Essbase 9)

· Much like DrillDownMember(), this function returns a set that is formed by drilling down one level on each member in set1 that is present in set2. However, it returns the bottom index children for a parent rather than all children. Set1 can be of arbitrary dimensionality; set2 must be of only one dimension.

· If set1 contains tuples, this will return a set that is formed by drilling down each tuple in set1 that has a matching member from set2 in it. If RECURSIVE is not specified, then only one pass through set1 is performed, matching each member or tuple with each member in set2. If RECURSIVE is specified, then the set that results from the first pass is again matched with each member in set2, and so on until no more members in the set being constructed are found in set2. At each step of drilling, the bottom index child members or tuples are returned instead of all children. The ranking is based on the numeric expression, if specified; otherwise, values from the set of children are evaluated in the current context, and those results are used. Figure A-17 illustrates the behavior of DrillDownMemberBottom().

[image: image47]
Figure A-17: DrillDownMemberBottom().

DrillDownMemberTop(set1, set2, index [, numeric expression][, RECURSIVE]]) Returns: set

Standard (not in Essbase 9)

· Like DrillDownMember(), this function returns a set that is formed by drilling down one level on each member in set1 that is present in set2. However, it returns the top index children for a parent rather than all children. Set1 can be of arbitrary dimensionality; set2 must be of only one dimension.

· If set1 contains tuples, this will return a set formed by drilling down each tuple in set1 that has a matching member from set2 in it. If RECURSIVE is not specified, then only one pass through set1 is performed, matching each member or tuple with each member in set2. If RECURSIVE is specified, then the set that results from the first pass is again matched with each member in set2, and so on until no more members in the set being constructed are found in set2. At each step of drilling, the top index child members or tuples are returned instead of all children. The ranking is based on the numeric expression, if specified; otherwise, values from the set of children are evaluated in the current context, and those results are used. Figure A-18 illustrates the behavior of DrillDown-MemberTop().

[image: image48]
Figure A-18: DrillDownMemberTop().

DrillUpByLayer(set [, layer]) Returns: set

Extension: Essbase

· See definition of DrillUpLevel(). DrillUpLevel() can be used as a synonym for DrillUpByLayer() in Essbase.

· See also: DrillDownByLayer(), DrillDownLevel()

DrillUpLevel (set [, level]) Returns: set

Standard

· This function strips away all members in the set that are below the given level. (In Essbase, either a generation or level may be used.) If the level is not provided, then it is assumed to be one level higher in the hierarchy than the level of the lowest level member(s) in the set (the lowest-level members in the set are removed). Figure A-19 illustrates the behavior of DrillUpLevel(). A set returned by DrillDownMember() or DrillDown-Level() will be suitable for cleanly drilling up with this function.

[image: image49]
Figure A-19: DrillUpLevel().

· See also: DrillDownLevel(),DrillDownByLayer(),DrillUpByLayer(),

DrillUpMember (set1, set2) Returns: set

Standard

· This step strips away members in set1 that are descendants of members in set2. Figure A-20 illustrates the behavior of DrillUpMember(). Set1 can contain tuples of arbitrary dimensionality; set2 must contain only members of one dimension.

· [image: image50]
Figure A-20: DrillUpMember().

Note that only descendants that are immediately after the ancestor member in set2 are stripped away. If an ancestor member specified in set2 is not present in set1, any descendants will remain. Descendants that precede the ancestor or that appear after another member that is not a descendant has intervened will not be stripped away. A set returned by DrillDownMember() or DrillDownLevel() will be suitable for drilling up cleanly with this function. Figure A-20 illustrates the behavior of DrillUpMember().

· See also: DrillDownMember()

E

Error([string_expr]) Returns: (no return)

Extension: AS2005

· The Error() function raises an error. This will propagate to callers; if an error occurs for evaluating a cell that is an input to a function like Filter() or Order() in an axis or slicer, the query will not successfully execute. If the error occurs while calculating a result cell, then the client will receive an error result when retrieving that cell’s value. It may be possible to detect and work around the error with the IsError() function that is part of VBA and .Net, although this may not work correctly until service pack 1 of AS 2005.

Except(set1, set2 [, ALL]) Returns: set

Standard

set1 – set2 Returns: set

Extension: AS2005, AS2000

· The Except() function removes all elements from set1 that also exist in set2. The ALL flag controls whether duplicates are retained or eliminated. When ALL is specified, duplicates in set1 are retained, though any tuples matching them in set2 are discarded. When ALL is not specified, no duplicates are returned. The members returned are determined by the order in which they appear in set1.

· See also: Union(), Intersect(),and the unary – (complement) operator for sets

· Microsoft Analysis Services also provides “-” as an alternate way of specifying Except(). Duplicates are removed from the resulting set. The expression Set1– Set2 is equivalent to Except (Set1, Set2).

· See also: Union(), Intersect(), and the unary– (complement) operator for sets

Existing set Returns: set

Extension: AS2005

· This function applies the attribute relationships in effect in the current context to restrict the tuples in set. For example, if the [Product].[Ship Weight] current context consists of the member [12], then Existing [Prod-uct].[SKU].Members will return only those [SKU] members associated with the ship weight [12]. The current context may contain multiple members for each related attribute (for example, due to a set in the slicer or in a defined subcube), in which case the set will be restricted to tuples which are associated with at least one of the members in context.

· See also: Exists

Exists (set1, set2 [, measure_group_name]) Returns: set

Extension: AS2005

· Returns all tuples in set1 which exist with respect to the tuples in set2. Set1 and set2 may or may not include related attribute hierarchy-dimensions. When the optional measure_group_name is provided, it uses existence of fact records for the measure group as the basis for relating members. members when set1 and set2 contain tuples from different dimensions (not just different hierarchy-dimensions). In this case, it is similar to NonEmpty(). If all measures in the measure group are NULL in a fact table row, Exists() will consider the relationship to exist, whereas if a fact table row doesn’t exist at all, it will consider the relationship to not exist. This is different from NonEmpty(), which requires at least one non-NULL measure value to exist for non-emptiness to be established.

· See also: CrossJoin(), Extract(), NonEmpty()

Exp (expr) Returns: number

Extension: Essbase

· Returns the value of e raised to the power of expr. Returns NULL if expr is NULL.

Extract (set, dimension[, dimension . . .]) Returns: set

Standard

· This function behaves as an opposite to the CrossJoin() function. The resulting set consists of tuples from the extracted dimension elements. For each tuple in the given set, the members of the dimensions listed in the arguments are extracted into new tuples. Since this could result in a great deal of redundancy, this function always removes duplicates from its results.

· See also: CrossJoin(), Generate()

F

Factorial (expr) Returns: number

Extension: Essbase

· Factorial() returns the factorial of expr. If expr is fractional, the fractional portion is truncated and the integer portion is used. If expr is fractional, the result is MISSING.

Filter (set, search condition) Returns: set

Standard

· Filter returns those tuples of set for which the search condition (a logical expression) is true. If none are true, an empty set is returned. The tuples in the resulting set follow the same order in which they appeared in the original set. Note that the search condition must be phrased as a Boolean expression; you cannot use the assumption that a nonzero numerical result means “true” and a zero numerical result means “false.”

· See also: iif(), CoalesceEmpty()

member.FirstChild Returns: member

Standard

member.LastChild Returns: member

Standard

· These functions return the first child or last child of the member according to the database ordering of the child members. Their behavior is illustrated in Figure A-21.

[image: image51]
Figure A-21: .FirstChild and .LastChild.

· See also: .FirstSibling, .LastSibling, .Children, .Siblings

member.FirstSibling Returns: member

Standard

member.LastSibling Returns: member

Standard

· Figure A-22 shows the behavior of the .FirstSibling and .LastSibling operators. The first child of a parent is its own first sibling, and the last child is its own last sibling. If no parent exists, then the first member in that level is the first sibling and the last member in the level is the last sibling. For example, the All or root member of a dimension is its own first and last sibling. In a dimension without an All level, the first member of the top level is the first sibling of all members at that level, and the last member of the top level is the last sibling of all members at that level.

[image: image52]
Figure A-22: .FirstSibling and .LastSibling.

· See also: .Siblings, .FirstChild, .LastChild

G

Generate(set1, set2 [, ALL]) Returns: set

Standard

Generate(set, string expression, [delimiter]) Returns: string

Extension: AS2005, AS2000

· The set version of Generate() iterates over each tuple in set1, and for each element in set1, it puts every element specified by set2 into the result set. The dimensionality of the result set is the dimensionality of set2. If ALL is specified, then duplicate result tuples are retained. If ALL is not specified, duplicates after the first are removed. Set1 and set2 may be composed of completely different dimensionality, or they may be composed of exactly the same dimensionality. When set2 is a relatively static set of members, this function behaves much like CrossJoin(). Generate() gains its iterative power when set2 is an expression that depends on the current member or tuple in set1.

· The string version of this function iterates over each tuple in the set specified as the first argument, evaluates the string expression for the current member of the set, and returns the concatenated result, optionally with a delimiter. For example, the following generates an HTML table of member names:

· "<table><tr><td>"

· + Generate (

· [Product].[ByCategory].CurrentMember.Children,

· [Product].[ByCategory].CurrentMember.Name,

· "</tr></td><tr><td>"

) + "</tr></td></table>"

· See also: CrossJoin(), Extract()

Member.Generation Returns: generation

Extension: Essbase

· Returns a reference to the entire generation in the hierarchy that member is in. (This is equivalent to a level of members in Analysis Services, being all members at the same depth from the root in the hierarchy.) Used primarily as an input to metadata functions like .Members.

· See also: Generations(), .Level

Dimension.Generations (index) Returns: generation

Extension: Essbase

· Returns a reference to the entire generation of members in the hierarchy of Dimension at index depth. Index 1 is the tip member of the generation. This is similar to a level of members in Analysis Services, being all members at the same depth from the root in the hierarchy, except that depth numbers start at 1 in this function and 0 in OLE DB for OLAP. Used primarily as an input to metadata functions like .Members.

· See also: .Generation, Levels()

H

Head (Set [, Count]) Returns: set

Extension: AS2005, AS2000, Essbase

· This function returns a set of the first Count elements from the given set. The order of elements in the given set is preserved. If Count is omitted, the number of elements returned is 1. If Count is less than 1, an empty set is returned. If the value of the Count is greater than the number of tuples in the set, the original set is returned.

· See also: Tail(), Subset(), Rank(), .Item()

Hierarchize (set) Returns: set

Standard

Hierarchize (set, POST) Returns: set

Extension: AS2005, AS2000, Essbase

· Hierarchize() returns the set that it is given after it puts all the members in each dimension of set into hierarchical order. By default, within each level, members are put into their database ordering, top down. Children are sorted to immediately follow after their parents. The optional POST keyword returns the members in bottom-up rather than top-down order; that is, the children precede their parents. When the tuples are composed of more than one dimension, they are sorted primarily on the first dimension, then on the second dimension, and so on. Any duplicate tuples are retained.

· In Analysis Services, Hierarchize() is similar to sorting on the members’ internal ID property.

· See also: Order(), Ascendants(), Ancestor(), .Parent

level.Hierarchy Returns: hierarchy

Standard (not by Essbase 9)

· This function returns the hierarchy that contains the level. Because Analysis Services semantically treats different hierarchies as different dimensions, this function is essentially equivalent to Level.Dimension.

member.Hierarchy Returns: hierarchy

Standard (not by Essbase 9)

· This function returns the hierarchy that contains the member. Because Analysis Services semantically treats different hierarchies as different dimensions, this function is essentially equivalent to Member.Dimension.

I

dimension.Ignore Returns: member

Extension: AS2000

· When used in an expression, .Ignore fixes the member of dimension at the current one in the context and prevents any further recursion along that dimension. In recursive calculations, sometimes a cell reference will end up being circular. For example, the level-wide custom rollup expression

· IIf (IsLeaf ([Accounts].CurrentMember),

· [Accounts].CurrentMember,

· RollupChildren ([Accounts].CurrentMember,

· Accounts.CurrentMember.Properties ("UNARY_OPERATOR"))

)

· becomes recursive at leaf levels, because the evaluation of the [Accounts].CurrentMember at the leaf level will still result in another cycle through the whole iif() clause. Modifying the expression to

· IIf (IsLeaf ([Accounts].CurrentMember),

· [Accounts].Ignore,

· RollupChildren ([Accounts].CurrentMember,

· Accounts.CurrentMember.Properties ("UNARY_OPERATOR"))

)

· fixes the problem; no more recursion will take place on the Account dimension.

Iif (search_condition, true_part, false_part) Returns: number, string (except in Essbase), set (EssbaseAS 2000), member, tuple, level, hierarchy, array (all only in AS2005)

· The standard version of the iif() function can either take numerical expressions for the true part and the false part and return a number, or it can take string expressions for the true part and the false part and return a string. Analysis Services 2005 extends this to allow the parts to have separate types, and for the results to be almost any MDX object (numeric and string values, members, sets, tuples, levels, hierarchies, dimensions and arrays). be numeric or string separately from each other. Hyperion Essbase extends the standard to allow the parts to return sets in addition to numbers, so for example an axis or a set to average over can be specified with an Iif() function.

· Since both AS2005 and Essbase allow you to return sets, you can write expressions like the following:

· SELECT IIF(condition, set1, set2) on axis(0) ...

· Avg (

· iif (condition, LastPeriods (3), LastPeriods(4)),

· [Measures].[Units]

)

· AS2005 allows iif() to return other kinds of things as well. For example, you can select the members from a level determined dynamically with the following:

· SELECT

· IIF (condition,

· [Customer].[Customer].[Region],

· [Customer].[Customer].[State]

).Members on axis(1) ...

· This function evaluates search_condition, which needs to be a logical value in Essbase but can be any value expression in AS 2005 and any logical or numeric expression in AS 2000. If the result is true, or at least nonzero in Analysis Services, then the true_part expression is evaluated and returned. If the result is not true, then the false_part expression is evaluated and returned. The standard version of the iif() function can either take numerical expressions for the true part and the false part and return a number, or it can take string expressions for the true part and the false part and return a string. Microsoft extends this to allow the parts to be numeric or string separately from each other. Hyperion extends this to allow the parts to return sets in addition to numbers, so for example an axis or a set to average over can be specified with an Iif() function.

· Note that when the search condition contains a logical expression that involves comparison operations, since NULL cells compare as equal to zero with any comparison operator, the result of the search condition cannot be NULL. However, either the true_part or the false_part may evaluate to NULL, in which case NULL will be the result when that condition is met.

· See also: CoalesceEmpty(), Filter(), CASE

Int (expr) Returns: number

Extension: Essbase

· The Int() function truncates the result of expr to the next-lower integer value.

· See also: Round()

Intersect(set1, set2 [,ALL]) Returns:

Standard

· The ALL flag controls whether duplicates are retained or eliminated. When ALL is not specified, only the unique tuples appearing in set1 that also appear in set2 are returned. When ALL is specified, then duplicated tuples in set1 that appear anywhere in set2 are returned. If duplicates of a tuple occur in set2, only the duplicates that exist in set1 will end up in the resulting set. The members are returned in the order in which they appear in set1. For example, the expression

· Intersect (

· {[Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale],

· [Customer].[KS].[Pittsburg], [Customer].[AZ].[Phoenix]},

· {[Customer].[NM].[Albuquerque], [Customer].[AZ].[Phoenix],

· [Customer].[AZ].[Scottsdale], [Customer].[AZ].[Phoenix]},

)

· yields the following set:

{ [Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale] }

· The expression

· Intersect (

· {[Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale],

· [Customer].[KS].[Pittsburg], [Customer].[AZ].[Phoenix]},

· {[Customer].[NM].[Albuquerque], [Customer].[AZ].[Phoenix],

· [Customer].[AZ].[Scottsdale], [Customer].[AZ].[Phoenix]},

· , ALL

)

· yields the following set:

· { [Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale],

 [Customer].[AZ].[Phoenix]}

object1 IS object2 Returns: boolean

Extension AS2005, AS2000, Essbase (for objects that are members)

· The Is operator is used to determine if two objects are equivalent. For example, the expression

· [Customers].CurrentMember

 IS [All Customers].[Canada].[BC].[Vancouver]

· will only return TRUE when the current customer member in the context is Vancouver, BC. In Analysis Services, you can compare objects of any kind, and you can compare objects with NULL as well to see if they exist. For example, if the first month in the Time dimension is [Jan 2000], then the following two expressions will return TRUE:

· [Jan 2000].PrevMember IS NULL

[Jan 2000].Level IS [Time].[Month]

· See also: IsEmpty(), IsValid()

IsAccType (member_spec , acct_tag) Returns: Boolean

Extension: Essbase

· IsAcctType() returns true if the member has the associated accounts tag. Account tags apply only to members in the dimension marked as Accounts. Returns false if the member_spec specifies a member in another dimension. The tags can be one of the following:

· First

· Last

· Average

· Expense

· TwoPass

· This makes it easy to filter a set of members to those having just a particular account type.

IsAncestor (AncestorMember, StartingMember) Returns: boolean Extension: AS2005, AS2000

IsAncestor (AncestorMember, StartingMember [, INCLUDEMEMBER])

Returns: boolean

Extension: Essbase

· This function returns true if the AncestorMember is indeed a proper ancestor of StartingMember, and false otherwise. No error is returned if the two members are from different dimensions (just false). Essbase will broaden the test to consider a member as its own ancestor if you include its optional INCLUDEMEMBER flag.

· See also: IsChild(), IsGeneration, IsSibling(), IsLeaf(), iif(), Is, .Ordinal

IsChild(ChildMember, ParentMember [, INCLUDEMEMBER]) Returns:

Boolean

Extension: Essbase

· This function returns true if the ChildMember is a child of ParentMember, and false otherwise. No error is returned if the two members are from different dimensions (just false). Essbase will broaden the test to consider a member as its own child if you include its optional INCLUDE-MEMBER flag.

· See also: IsAncestor(), IsGeneration, IsSibling(), IsLeaf(), iif(), Is, .Ordinal

IsEmpty(ValueExpression) Returns: boolean

Standard

· This function returns true if the ValueExpression is NULL, and false otherwise. Note that in Analysis Services, if the ValueExpression is a tuple instead of a simple member reference, then it must be enclosed by parentheses to distinguish the use of parentheses for tuple construction from parentheses for delimiting the argument to IsEmpty(), as in:

IsEmpty (([Measures].[Units], [Time].PrevMember))

· Also, in Analysis Services, note that IsEmpty() will return false if a property reference is not valid for the member (like IsEmpty ([Time].CurrentMember.Properties("Mailing Address")). More generally, in AS 2005, it will return false if evaluation of ValueExpression raises an error.

· See also: iif(), IS, IsValid(), Error()

IsGeneration(member, generation_number) Returns: boolean

Extension: AS2005, AS2000, Essbase

· (Analysis Services and Essbase implement different semantics for this function, although the syntax is the same.)

· In Analysis Services, this function returns true if the member is generation_ number steps from the leaf level, and false otherwise. The definition of a generation is as follows: The leaf level is considered to be generation 0. For every non-leaf member, the generation number is 1 plus the range of generation numbers from all of the children of its parent. In an irregular hierarchy, this means that a member may belong to more than one generation. For example, the generation numbers for a simple hierarchy are shown in Figure A-23

· [image: image53]
Figure A-23: Microsoft Implementation of IsGeneration().

In the case of a ragged level-based dimension, the generations are counted from the visible members. If a leaf member has a hidden parent and a visible grandparent, for example, the visible grandparent will be considered to be generation 1.

· The expression IsGeneration ([Account].CurrentMember, 0) is equivalent to IsLeaf ([Account].CurrentMember).

In Essbase, a generation is the depth from the root, where the top member of a dimension is at generation 1. The function returns true if the member is at generation_number within the hierarchy, so IsGeneration ([Time].CurrentMember, 3) returns true if the current time member is a grandchild of the top member (or two steps below the top member).

· See also: IsAncestor, IsSibling(), IsLeaf(), IsLevel() iif(), IS, .Ordinal

IsLeaf (Member) Returns: Boolean

Extension: AS2005, AS2000, Essbase

· This function returns true if the Member is a leaf member in its dimension, whether the dimension is a parent-child dimension or a regular dimension.

· In the case of a ragged level-based dimension, a member is considered to be a leaf member if it has no visible children.

· Essbase accomplishes the same thing with IsLevel().

IsLevel (member, level_number) Returns: boolean

Extension: Essbase

· In Essbase, a level is the height from the leaf level of a dimension. The leaf level of a dimension is level 0. The function returns true if member is at the level indicated by level_number, and false otherwise. IsLevel (Customer.CurrentMember, 0) returns true if the current customer member is a leaf member. When different children are at different heights from the leaf level in a dimension, the member is considered to only be at the level corresponding to the maximum level of its children, plus one. So, a member that has one level-one child and one level-two child will be considered only to be at level 3 and IsLevel(..., 2) will return false for it.

· Note that Analysis Services has a special test for leaf members with the IsLeaf() function.

· See also: IsAncestor(), IsSibling(), IsGeneration(), IsLeaf(), iif(), IS, .Ordinal, CASE

IsSibling(Member1, Member2) Returns: boolean

Extension: AS2005, AS2000, Essbase

IsSibling(Member1, Member2, INCLUDEMEMBER) Returns: Boolean

Extension: Essbase

· This function returns true if the Member1 is a sibling of Member2. In Analysis Services, IsSibling() considers a member to be a sibling of itself. In Essbase, a member is not by default a sibling to itself; the

· INCLUDEMEMBER option must be used in the function to return true when member1 and member2 are the same member.

· In Analysis Services, in a ragged, level-based dimension, the sibling relationship is determined by the visibility of members. If a parent has one hidden child and one visible child, and the hidden child has a visible child, the two visible children will be considered as siblings.

· See also: IsAncestor, IsLeaf(), IsGeneration(), iif(), IS, .Ordinal

IsUDA(member_spec, “UDA Name”) Returns: boolean

Extension: Essbase

· This function returns true if the UDA is defined at the member specified by member_spec.

· See also: UDA()

IsValid (member | tuple | set | layer | property) Returns: boolean

Extension: Essbase

· This function returns true if the member, tuple, set, layer, or property reference is valid. Examples of invalid references would be: an ancestor of the top member, a reference using set.Item() with an index out-of-range, a request for the children of a leaf member, the level below the bottom level, or a property value at an invalid level.

· See also: IsEmpty()

tuple[.Item](index) Returns: member

Standard: AS2005, AS2000, Essbase

Item (tuple, index) Returns: member

Extension: Essbase

· This function returns the member at the index position within the tuple. The index is based at 0. For example, ([Product].[Jackets], [Time].[2006]).Item (0) is [Product].[Jackets], and ([Product].[Jackets], [Time].[2006]).Item (1) is [Time].[2006]. We indicate that Item() is optional because it is the default operator. The following are equivalent:

· Tuple(index)

Tuple.Item(index)

set[.Item](index) Returns: tuple

Standard

Item (set, index) Returns: tuple

Extension: Essbase

set[.Item](string expression[,string expression . . .]) Returns: tuple Standard (except by Essbase 9)

· The first variation of the .Item() operator returns the tuple at the index position within the set. The index is based at 0. For example, consider:

· { [Time].[1996], [Time].[1997] }.Item (0) is [Time].[1996]

{ [Time].[1996], [Time].[1997] }.Item (1) is [Time].[1997]

· The second variation returns the first tuple in the set whose name is matched by the string expressions. When using the string form, you can use either one string or more than one string. If you use one string, it must contain a complete tuple specification. If you use more than one string, then the number of strings must match the number of dimensions, but each string will identify only one member from one dimension. In either case, the order of dimensions listed in the string(s) must match the order of dimensions in the set. If some member from the strings is not found in the metadata when the expression is parsed, then a parse error results. If the member is found in the metadata, but not in any tuple in the set, then an empty tuple is returned. For example, the following two item specifications are identical:

· Crossjoin ([Time].[Year].members, _[Customer].[State].Members).Item(

· "[1997]", "[FL]")

· Crossjoin ([Time].[Year].members, _[Customer].[State].Members).Item(

"([1997], [FL])")

· Note that in the tuple specifications, member expressions can be used as well as named members. For example, the following are also equivalent to the two-item specifications just given:

· Crossjoin (

· [Time].[Year].members,

· [Customer].[State].Members

·).Item("[1998].lag(1)", "[FL]")

· Crossjoin (

· [Time].[Year].members,

 [Customer].[State].Members).Item("([1997].[Q1].Parent, [FL])")

· We indicate that .Item() is optional because it is the default operator. The following are equivalent:

· Set(index)

Set.Item(index)

· Remember: If you are trying to use Rank() to pick out an index for Item(), that Rank returns a 1-based index, and you will need to subtract 1 from it to use it with Item().

K

KPICurrentTimeMember (KPI_name) Returns: member

Extension: AS2005

· This function returns the time member associated with the KPI named KPI_name. The KPI_Name is a string expression.

KPIGoal (KPI_name) Returns: member

Extension: AS2005

· This function returns the member that calculates the value of the goal for the KPI named KPI_name. The KPI_Name is a string expression.

KPIStatus (KPI_name) Returns: member

Extension: AS2005

· This function returns the member that calculates status value associated with the KPI named KPI_name. To conform to the conventions used in constructing the KPI graphic images, you should try to have this function return a value that is the KPIStatusValue() result somehow normalized between -1 and 1, although there is no technical requirement that you do so. The KPI_Name is a string expression.

KPITrend (KPI_name) Returns: member

Extension: AS2005

· This function returns the member that calculates a trend value associated with the KPI named KPI_name. To conform to the conventions used in constructing the KPI graphic images, you should try to have this function return a value normalized between -1 and 1, although there is no technical requirement that you do so. The KPI_Name is a string expression.

KPIValue (KPI_name) Returns: member

Extension: AS2005

· This function returns the member that calculates the value of the KPI named KPI_name. The KPI_Name is a string expression.

KPIWeight (KPI_name) Returns: member

Extension: AS2005

· This function returns the number that calculates weighting of the contribution of the KPI named KPI_name to its parent KPI. To conform to the conventions used in constructing the KPI graphic images, you should try to have this function return a value normalized between -1 and 1, although there is no other technical requirement that you do so. The KPI_Name is a string expression.

L

member.Lag(index) Returns: member

Standard

· .Lead() returns the member that is index number of members after the source member along the same level, and .Lag() returns the member that is index number of members before the source member on the same level. .Lead(0) and .Lag(0) each result in the source member itself. Lag-ging by a negative amount is the same as leading by the positive quantity and vice versa. Figure A-24 shows examples of .Lead() and .Lag().

[image: image54]
Figure A-24: .Lag() and .Lead().

member.LastChild Returns: member

Standard

· See definition for .FirstChild

LastPeriods(index [, member]) Returns: set

Standard

· This function returns the set of index periods from member back to the member lagging by index-1 from member. This is almost equivalent to

{ member.LAG(index - 1) : member }.

· If member is not specified, then it defaults to the current member of the Time-typed dimension in the cube. If the index is a negative number, then the range goes forward from the member to index –1 members instead of backward. If index is 0, then an empty set is returned (which makes it slightly different from using .Lag()). If member is omitted, and no dimension in the cube is marked as being Time-typed, the statement will be parsed and execute without error. However, when a client attempts to retrieve a cell calculated in part by the LastPeriods() function, a cell error will occur.

· The behavior of LastPeriods() is shown in Figure A-25.

· [image: image55]
Figure A-25: Behavior of LastPeriods().

See also: OpeningPeriod(), ClosingPeriod(), .Lag(), .Lead()

member.LastSibling Returns: member

Standard

· See definition for .FirstSibling

member.Lead(index) Returns: member

Standard

· See definition for .Lag()

Leaves () Returns: set

Leaves (dimension) Returns: set

· This function returns a set of the cross-join of the lowest level of all attribute hierarchies in the dimension. This includes the dimension’s key attribute and all leaf-level attributes. If the dimension is omitted, the leaf level space is a set for the entire leaf level of the cube (!).

· Note that the Leaves() function cannot be used if different measure groups in scope in the cube use the dimension at different levels of granularity (including if some are dimensioned by it and some do not). You can select from a subcube that only includes measures from a suitable measure group or groups.

· While you can use this function in any MDX expression, it is most likely to be useful as part of specifying subcubes either in an MDX script or in a query or session subcube.

· See also: MeasureGroupMeasures(), Root()

member.Level Returns: level

Standard

· This function returns a member’s level.

Levels (string expression) Returns: level

Extension: AS2005, AS2000

· This function returns the level whose name is given by string expression. It is typically used with user-defined functions (UDFs) that return a name. The string expression can be any expression that results in a level reference. For example, the string “[Time].[Year]” will result in the year level of the Time dimension. However, the string “[Time].Levels(1)” in a Time dimension where the year level is the first one down from the root level will also result in the year level. (See the following description for the Dimension.Levels() function as well.)

Dimension.Levels (numeric expression) Returns: level

Standard

· This function returns the dimension level specified by numeric expression. Note that in Analysis Services, the number is zero-based, starting at the root level, while in Essbase the number is one-based starting at the leaf level.

· For example, in Analysis Services, if the levels of the [Time] dimension are [All], [Year], and [Month], then [Time].Levels(0) returns the [Time]. [All] level, and [Time].Levels(2) returns the [Time].[Month] level. In Analysis Services, you can obtain the number of levels in the dimension with Dimension.Levels.Count, which lets you refer to the leaf level by the expression Dimension.Levels (Dimension.Levels.Count).

LinkMember(member, dimension) Returns: member

Extension: AS2005, AS2000

· The LinkMember() function is used to reference a member in one hierarchy based on a member from another related hierarchy. The hierarchies may either be from the same dimension (where a dimension has multiple hierarchies) or from different dimensions. (Remember that different hierarchies are different dimensions in Microsoft OLAP/Analysis Services.) The members are matched by key rather than by name, so members with the same key but with different names will be linked. For example, the expression

Hierarchize(

 Ascendants(

 Linkmember([Time].[Calendar].[Jan 1 1999],[Time].[Fiscal])

))

· will return the ascendants in the fiscal hierarchy for the calendar hierarchy member [Jan 1 1999].

LinRegIntercept(set, y numeric expression [, x numeric expression]) Returns: number

Standard (not in Essbase 9)

· This function returns the intercept of the linear regression line calculated from the given data points (where the regression line intersects 0). For the linear equation y = ax + b, which will be determined over some set of y and x, the values of the y numeric expression are evaluated over the set to get the y values. If the x numeric expression is present, then it is evaluated over the set to get the values of the x axis. Otherwise, the cells formed by the set are evaluated within the current context and their values are used as the x values. Empty cells and cells containing text or logical values are not included in the calculation, but cells with zero values are included.

· Once the linear regression line has been calculated, this function returns the x-intercept of the line (represented by b in the equation y = ax + b).

· See also the other LinRegXXX functions.

LinRegPoint(x slice numeric expression, set, y numeric expression [, x numeric expression]) Returns: number

Standard (not in Essbase 9)

· This function returns the value of the calculated linear regression line y = ax + b for a particular value of x. For the linear equation y = ax + b, which will be determined from a set of y and x values, the values of the y numeric expression are evaluated to get the y values. If the x numeric expression is present, then it is evaluated over the set to get the values of the x axis. Otherwise, the cells formed by the set are evaluated within the current context and their values are used as the x values. Empty cells and cells containing text or logical values are not included in the calculation, but cells with zero values are included.

· Once the linear regression line has been calculated, the value of y = ax + b is calculated for the value given in the x slice numeric expression and is returned.

LinRegR2(set, y numeric expression [, x numeric expression]) Returns: number

Standard (not in Essbase 9)

· This function returns the statistical R2 variance of the given data points to the linear regression line calculated from them. For the linear equation y = ax + b, which will be determined over some set of y and x, the values of the y numeric expression are evaluated to get the y values. If the x numeric expression is present, then it is evaluated over the set to get the values of the x axis. Otherwise, the cells formed by the set are evaluated within the current context and their values are used as the x values. Empty cells and cells containing text or logical values are not included in the calculation, but cells with zero values are included.

· Once the linear regression line has been calculated, this function returns the statistical R2 variance between the points on it and the given points.

· See also the other LinRegXXX functions.

LinRegSlope(set [, y numeric expression [, x numeric expression]) Returns: number

Standard (not in Essbase 9)

· This function returns the slope of the linear regression line calculated from the given data points. For the linear equation y = ax + b, which will be determined over some set of y and x, the values of the y numeric expression are evaluated to get the y values. If the x numeric expression is present, then it is evaluated over the set to get the values of the x axis. Otherwise, the cells formed by the set are evaluated within the current context and their values are used as the x values. Empty cells and cells containing text or logical values are not included in the calculation, but cells with zero values are included.

· Once the linear regression line has been calculated, this function returns the slope of the line (represented by a in the equation y = ax + b).

· See also the other LinRegXXX functions.

LinRegVariance(set, y numeric expression [, x numeric expression]) Returns: number

Standard (not in Essbase 9)

· This function returns the variance of fit of the calculated linear regression line to the actual points given for it. For the linear equation y = ax + b, which will be determined over some set of y and x, the values of the y numeric expression are evaluated to get the y values. If the x numeric expression is present, then it is evaluated over the set to get the values of the x axis. Otherwise, the cells formed by the set are evaluated within the current context and their values are used as the x values. Empty cells and cells containing text or logical values are not included in the calculation, but cells with zero values are included.

· Once the linear regression line has been calculated, this function returns the statistical variance between its points and the given points.

· See also the other LinRegXXX functions.

Ln (numeric expression) Returns: number

Extension: Essbase

· Ln() returns the natural logarithm of the value calculated by numeric expression. If that value is zero, negative, or NULL, returns NULL.

· See also: Exp(), Log(), Log10(), Power()

Log (numeric expression [,base]) Returns: number

Extension: Essbase

· Log() returns the base-base logarithm of the value calculated by numeric expression. If that value is zero, negative, or NULL, returns NULL. If base is omitted, base 10 is assumed.

· See also: Exp(), Ln(), Log10(), Power()

Log10(numeric expression) Returns: number

Extension: Essbase

· Log10() returns the base-10 logarithm of the value calculated by numeric expression. If that value is zero, negative, or NULL, returns NULL.

· See also: Exp(), Ln(), Log(), Power()

LookupCube(cube_string, numeric_expression) Returns: number

Extension: AS2005, AS2000

LookupCube(cube_string, string_expression) Returns: string

Extension: AS2005, AS2000

· LookupCube() can be used to retrieve a single value from another cube. This function can look up values from a regular cube or a virtual cube. The expression can also reference calculated members within the designated cube. The function is most likely to be used as part of a calculated member or custom rollup expression, although care must be taken to ensure that the result is as expected, because LookupCube() returns only a single value and does not respect the context of the current query. This means that any necessary current members need to be placed in the numeric expression or string expression. For example, the following calculated member only makes sense if we are looking at the All level on the other dimensions:

WITH MEMBER [Measures].[Store Net Sales] AS

'[Measures].[Store Sales] - LookupCube("Budget","[Account].[Total

Expense]")'

· The following will include time and product dimensions from the sales cube:

WITH MEMBER [Measures].[Store Net Sales] AS

'[Measures].[Store Sales] - LookupCube("Budget",

 "([Account].[Total Expense]," + [Time].CurrentMember.UniqueName +

","

 + [Product].CurrentMember.UniqueName + ")"

)'

· See also: StrToVal()

M

Max(set [, numeric expression]) Returns: number

Standard

· This function returns the maximum value found across the cells of the set. If a numeric expression is supplied, then the function finds the maximum of its nonempty values across the set. Note that in Analysis Services, a positive number divided by zero will cause an erroneous value that will be reported as the maximum.

· See also: Min(), Median()

MeasureGroupMeasures (string_expression) Returns: set

Extension: AS2005

· This function returns the set of measures contained in the measure group named by string_expression. Note that the name should be exactly as specified when designing the cube, e.g. “Sales” or “Currency Rates”, not “[Sales]” or “[Currency Rates]”.

· See also: .Members, .AllMembers

Median(set [, numeric expression]) Returns: number

Standard (not in Essbase 9)

· This function returns the median value found across the cells of the set. If a numeric expression is supplied, then the function finds the median of its values across the set.

· See also: Min(), Max()

MemberRange (member1, member2 [, { LEVEL | GENERATION }])

Returns: set

Extension: Essbase

· MemberRange() is a more flexible version of the colon operator { mem-ber1 : member2 }. It returns a range extending from member1 through member2, but allows you to specify whether that range is of all members at the same generation/depth in the hierarchy or all members at the same level/height in the hierarchy. If the third argument is omitted, members are from the same depth in the hierarchy, just like the colon operator (equivalent to specifying GENERATION).

· See also: Colon (:)

dimension.Members Returns: set

Standard

hierarchy.Members Returns: set

Standard (not in Essbase 9)

level.Members Returns: set

Standard

generation.Members Returns: set

Extension: Essbase

· Each of the variations of the .Members function returns the set of all members within the scope of the given metadata object in the database’s default order. Figure A-26 shows the scope of the members operator. Dimension.Members, shown in Figure A-26a, returns the members of the entire dimension and includes the All member of the hierarchy if present. Because in OLAP/Analysis Services a hierarchy is implemented as a dimension, the Hierarchy.Members function is also shown. Level.Mem-bers, shown in Figure A-26b, selects all members in the specified level.

· See also: .AllMembers, MeasureGroupMeasures(), AddCalculatedMembers(), StripCalculatedMembers()

[image: image56]
Figure A-26a: Members selected by .Members operator.

[image: image57]
Figure A-26b: Members selected by Level.Members

Members(string expression) Returns: member

Extension: AS2005, AS2000

· This function returns the member whose name is given by string expression. (Yes, it only returns a single member, even though its name is plural.) The most common use for this function is to take a string from a user-defined function (UDF) that identifies a member and convert it to a member. For example, consider a UDF named UDF_GetMySalesTerri-tory on the client that returned the member name for the user’s sales territory. Given this UDF, the following expression,

([Measures].[Sales], Members (UDF_GetMySalesTerritory()))

· would refer to the sales value for that user’s sales territory.

· See also: StrToMember(), StrToTuple(), StrToSet(), .Name, .UniqueName

Members(dimension | level | generation) Returns: set

Extension: Essbase

· This function returns the set of members in the specified dimension, level or generation. It is a variation of dimension.Members, level.Members, and generation.Members.

· See also: .Members

MemberToStr (member) Returns: string

Standard (not in Essbase 9)

· This function returns the unique name of a member. In Analysis Services, the MDX Compatibility and MDX Unique Name Style connection parameters will determine the format of the name generated. This is identical in function to .UniqueName.

· See also: Member.UniqueName

Min (set [, numeric expression]) Returns: number

Standard

· This function returns the minimum value found across the cells of the set. If a numeric expression is supplied, then the function finds the minimum of its values across the set. Note that in Analysis Services, a negative number divided by zero will cause an erroneous value that will be reported as the minimum.

· See also: Max(), Median()

MTD ([member]) Returns: set

Standard

· MTD() is the equivalent of PeriodsToDate() with the level set to Month. If member is not specified, it defaults to the current member of the Time-typed dimension. If no Time-typed dimension is in the cube, or if it does not have a level tagged as Month, then an error results.

· See also: PeriodsToDate(), YTD(), QTD(), WTD()

N

dimension.Name Returns: string

Extension: AS2005, AS2000

· This function returns the name of the dimension.

· See also: .UniqueName, Dimensions()

hierarchy.Name Returns: string

Extension: AS2005, AS2000

· This function returns the name of the hierarchy.

· See also: .UniqueName

level.Name Returns: string

Extension: AS2005, AS2000

· This function returns the name of the level.

· See also: .UniqueName, .Ordinal, Levels()

member.Name Returns: string

Extension: AS2005, AS2000

· This function returns the name of the member. (Essbase uses the predefined member property member.[MEMBER_NAME] to achieve the same effect.)

· See also: StrToMember(), StrToTuple(), StrToSet(), TupleToStr(), .UniqueName

NameToSet (membername) Returns: set (of one member)

Extension: AS2005, AS2000

· This function returns a set containing one member specified by the member name. If no member can be found with this name, then the set is returned empty (and it cannot be identified with .Dimension). The contents of membername must be only a member name or unique name. It cannot be a member expression, as StrToSet() would allow.

· See also: Member.UniqueName, StrToSet(), StrToMember()

member.NextMember Returns: member

Standard

· See description of .PrevMember

NonEmpty (set1 [, context_set]) Returns: set

Extension: AS2005

· This function returns the tuples of set1 that are non-empty across the tuples of context_set. Non-emptiness is a characteristic of cells, not tuples. The measure(s) to use in determining whether or not a tuple is “empty” are found in one of the sets. If the context_set is omitted, the current context of all current members from all dimensions not part of set1 is used. Even if context_set is provided, the current context of all attributes is present, whether or not they explicitly participate in either of the sets.

· See also: NonEmptyCrossJoin(), Filter(), Count(), NonEmptyCount(), IsEmpty()

NonEmptyCrossJoin (set1, set2 [,set3 . . .] [, set-count]) Returns: set

Extension: AS2005, AS2000

· This function returns the nonempty cross-join of two or more sets. It is based on data actually present in fact tables. This means that it filters out all tuples involving calculated members.

· Note that while this function is supported in Analysis Services 2005, Microsoft is recommending that you use NonEmpty instead.

· Nonemptiness is a characteristic of cells as opposed to tuples. Non-EmptyCrossJoin() takes a different approach to specifying the cells than the other functions that deal with empty/nonempty cells associated with tuples. If the set-count is present, then the number specified for it will be used as the number of sets (starting at set1) to actually cross-join. The remaining sets listed will be used to form the slices used to find the cells that are nonempty. (Any dimensions not listed will have their current member used to determine cells.)

· If the set-count parameter is provided, then only that number of sets (in the order that they appear) will contribute tuples to the resulting set. The remaining sets will provide the context or add members for consideration in the nonemptiness. The other sets may have only one member, or they may have multiple members. If they have multiple members, it is possible that more than one contributes to result tuples. Only the distinct tuples from the dimensions listed in the first set-count sets will be returned, though.

· Note that if a measure field is NULL in the underlying fact table, Analysis Services 2000 will treat the measure as zero, so the associated tuple will show up in the nonempty set (unless all measures in the row are NULL). Analysis Services 2005 allows measures to be NULLable, however, so the tuple won’t show up unless there actually was a value for it in the underlying table.

· Note that NonEmptyCrossJoin() always eliminates duplicate tuples, and ignores all calculations by calculated members, cell calculations, MDX scripts, and so on. This makes it less useful than NonEmpty() for determining true non-emptiness of a set of tuples, so in general NonEmpty() seems preferable.

· See also: CrossJoin(), Extract(), Except(), Union(), Intersect()

NonEmptyCount (set [,numeric_expression]) Returns: number

Extension: Essbase

· Returns the number of tuples in set for which the numeric_expression was not NULL. If set is empty, the function returns 0.

· See also: Count()

NOT expr Returns: Boolean

Standard

· The NOT operator returns false if expr is true, and false otherwise.

O

OpeningPeriod ([level [, member]]) Returns: member

Standard

ClosingPeriod ([level [, member]]) Returns: member

Standard

· The OpeningPeriod() and ClosingPeriod() functions are essentially first-descendant and last-descendant operators that are intended primarily to be used with the Time dimension, though they may be used with any dimension. The OpeningPeriod function returns the first member among the descendants of member at level. For example, Opening- Period(Month, [1991]) returns [January, 1991]. If no member is specified, then the default is the current member of the Time-type dimension in that cube. If no level is specified, then it is the level immediately below that of member. OpeningPeriod (level, member) is equivalent to Descendants(member, level).Item(0). Closing-Period() is very similar, only it returns the last descendant instead of the first descendant. Opening-Period() and ClosingPeriod() are illustrated in Figure A-27.

· [image: image58]
Figure A-27: OpeningPeriod() and ClosingPeriod().

If member is omitted, and no dimension in the cube is marked as being Time-typed, the statement will parse and execute without error. However, when a client attempts to retrieve a cell calculated in part by the OpeningPeriod() or ClosingPeriod() function, a NULL member reference will occur in Analysis Services.

· See also: PeriodsToDate(), ParallelPeriod(), Is

expr1 OR expr2 Returns: Boolean

Standard

· The OR operator returns true if either expr1 is true or expr2 is true. In Analysis Services, if expr1 evaluates to true, then expr2 is not evaluated (because the result is already guaranteed to be true).

· See also: AND, NOT, XOR, iif(), Filter()

Order (set, {string_expression | numeric_expression} [,ASC | DESC | BASC | BDESC]) Returns: set

Standard (of which Essbase supports a subset)

· Order() returns the set that it is given after it sorts it based on the given expression. If a numeric or string value expression is provided, then that is used to sort the tuples; otherwise, the values of the cells in context are used. This function also takes an optional flag to indicate how to sort. The default ordering is ASC (ascending without breaking the hierarchy).

· Order() has two modes for sorting: breaking hierarchy and preserving hierarchy. The BASC and BDESC options break the hierarchy, while ASC and DESC do not. When the hierarchy is broken, the values associated with each tuple in the set are treated as peers, and the set is ordered only by the values. When the hierarchy is preserved, a more complex ordering algorithm is used, which can lead to very useful results.

ESSBASE SUPPORT

Note that Essbase only supports the BASC and BDESC sort options, and its default sort is BASC.

· Note that there is no explicit way to sort a set based on more than one criterion. For example, if you want to sort a set based primarily on a string member property and secondarily on a numerical value, no good way is available for specifying this.

Preserving Hierarchy: Set Containing One Dimension

When the set consists only of one dimension’s worth of members, sorting and preserving the hierarchy orders each parent before its children. At each level of members from the top down, the children of each parent are sorted relative to each other. For example, the product hierarchy for a fictional fishcake manufacturer is shown in Figure A-28 and the units shipped per product are shown in Figure A-29. Ordering these members while preserving the hierarchy would give us the orderings shown in Figure A-30.

Category

Product Name

Premium

Ancient Mariner

Premium

Gobi Crab Cakes

Premium

Moby Dick

Premium

Neptunes Glory

Diet

Silver Scales

Diet

Thin Fins

Standard

Anglers Choice

Standard

Briny Deep

Standard

Gill Thrill

Standard

Mako Steak-o

Figure A-28: Sample product hierarchy.

Product

Units

Ancient Mariner

221,871

Gobi Crab Cakes

223,351

Moby Dick

200,745

Neptunes Glory

210,745

Premium

856,274

Silver Scales

425,604

Thin Fins

434,482

Diet

860,086

Anglers Choice

207,662

Briny Deep

201,443

Gill Thrill

209,962

Mako Steak-o

215,521

Standard

834,588

Figure A-29: Units shipped in hierarchy.

ASC

Product

Units

Standard

834,588

Briny Deep

201,443

Anglers Choice

207,662

Gill Thrill

209,962

Mako Steak-o

215,521

Premium

856,274

Moby Dick

200,745

Neptunes Glory

210,745

Ancient Mariner

221,871

Gobi Crab Cakes

223,351

Diet

860,086

Silver Scales

425,604

Thin Fins

434,482

DESC

Product

Units

Diet

860,086

Thin Fins

434,482

Silver Scales

425,604

Premium

856,274

Gobi Crab Cakes

223,351

Ancient Mariner

221,871

Neptunes Glory

210,745

Moby Dick

200,745

Standard

834,588

Mako Steak-o

215,521

Gill Thrill

209,962

Anglers Choice

207,662

Briny Deep

201,443

Figure A-30: Hierarchy preserved in ordering.

Also, an extra sophistication in the sorting process is not immediately evident. Let us imagine that the category-level members [Standard], [Premium], and [Diet] were not part of the set being queried, while the ProductName members still were. Therefore, the category-level [Units] value does not come directly into play when the set is ordered. However, when sorting without breaking hierarchy, the [Units] value is still calculated at each parent member when Microsoft OLAP Services is trying to figure out how to order the groups of children relative to their cousins.

For example, suppose that the following set of product names was ordered by Units: {[Product].[Briny Deep], [Product].[Anglers Choice], [Product]. [Ancient Mariner], [Product].[Gobi Crab Cakes], [Product].[Thin Fins]}. The ordering shown in Figure A-31 would be returned.

ASC

Product

Units

Parent’s Units

Briny Deep

201,443

834,588

Anglers Choice

207,662

Ancient Mariner

221,871

856,274

Gobi Crab Cakes

223,351

Thin Fins

434,482

860,086

DESC

Product

Units

Parent’s Units

Thin Fins

434,482

860,086

Gobi Crab Cakes

223,351

Ancient Mariner

221,871

856,274

Anglers Choice

207,662

Briny Deep

201,443

834,588

Figure A-31: Hierarchy preserved when ordering a set without parents.

Preserving Hierarchy: Set Containing Multiple Dimensions

When the set consists of multiple dimensions, the tuples are sorted so that the hierarchical ordering of the first dimension in the tuples is the primary ordering. According to this ordering, within each member of the first dimension, the members of the second dimension are sorted. Within each ([member from dim 1], [member from dim 2]) tuple, the members of the third dimension are sorted, and so on. For example, let’s expand the example to include some customers and time periods and order the cross-join of

{ [Product].[Briny Deep], [Product].[Anglers Choice], [Product].[Mako

Steak-o] }

with

{ [Time].[Quarter 2], [Time].[Quarter 3] }

with

{ [Customer].[Supernaturalizes Food Service], [Customer].[Hanover

Distributors], [Customer].[Subcommittees Anticipates Farms] }.

The ordering and values shown in Figure A-32 will appear. The products are arranged in order of decreasing quantity over year and customer parent. For each product, the quarters are arranged in order of decreasing quantity based on that product and customer parent. For each (Product, Time) tuple, the customers are arranged in order of decreasing quantity. Where tuples are tied (at the blank cells), the original ordering of the tuples is retained rather than the dimension’s ordering (which was alphabetical).

Qty.

Mako Steak-o

Quarter 2

Subcommittee Anticipation Farms

199.00

Supernatural Food Service

87.00

Hanover Distributions

64.00

Quarter 3

Hanover Distributions

185.00

Supernatural Food Service

151.00

Subcommittee Anticipation Farms

105.00

Anglers Choice

Quarter 3

Hanover Distributions

181.00

Supernatural Food Service

179.00

Subcommittee Anticipation Farms

Quarter 2

Supernatural Food Service

127.00

Hanover Distributions

73.00

Subcommittee Anticipation Farms

Briny Deep

Quarter 3

Subcommittee Anticipation Farms

213.00

Supernatural Food Service

Hanover Distributions

Quarter 2

Subcommittee Anticipation Farms

204.00

Supernatural Food Service

Hanover Distributions

Figure A-32: Hierarchy preserved when ordering a set with multiple dimensions.

See also: Hierarchize()

Level.Ordinal Returns: number (integer)

Standard (not in Essbase 9)

· This function returns the index of the level in the cube. The root level of a cube is number 0, the next level down (if there is one) is number 1, and so on. This is typically used in conjunction with IIF() to test whether a cell being calculated is at, above, or below a certain level in the cube (for example, below the All level or below the Quarter level). In Analysis Services, you can obtain the number of levels in the dimension with Dimension.Levels.Count.

· See also: Is, .Name, Dimension.Levels(), Levels()

Ordinal (level | generation) Returns: number (integer)

Extension: Essbase

· Returns the level number for level or the generation number for generation in the hierarchy. The top member of the dimension is generation 1. The leaf level of the dimension is level 0.

· See also: .Ordinal, .Levels(), .Generations(), Level(), Generation()

P

ParallelPeriod ([level [, index [, member]]]) Returns: set

Standard

· This function is similar to the Cousin() function. It takes the ancestor of member at level (call it “ancestor”), then it takes the sibling of ancestor that lags by index (call it “in-law”), and it returns the cousin of member among the descendants of in-law. Figure A-33 illustrates the process of finding the parallel period. ParallelPeriod (level, index, member) is equivalent to Cousin (member, Ancestor (Member, Level).Lag(index).

· [image: image59]
Figure A-33: ParallelPeriod() operator.

See also: Cousin(), OpeningPeriod(), ClosingPeriod(), Is

member.Parent

Standard

· This function returns the source member’s parent member, if it has one. The behavior of Parent() is shown in Figure A-34.

· See also: Ancestor(), Ascendants(), IsAncestor(), IsGeneration()

[image: image60]
Figure A-34: Behavior of .Parent.

PeriodsToDate ([level [, member]]) Returns: set

Standard

· This function returns a set of members at the same level as member, starting at the first descendant under member’s ancestor at level and ending at member. If neither level nor member is specified, then the default member is the current member of the cube’s Time-typed dimension, and level is the parent level of that member. If the level is specified but the member is not, then the dimension is inferred from the level, and the current member on that dimension is used. The function is identical to the following:

{ Descendants (Ancestor(member, level), member.Level).Item (0)

: member }

· If member is omitted, and no dimension in the cube is marked as being Time-typed, the statement will be parsed and execute without error. However, when a client attempts to retrieve a cell calculated in part by the PeriodsToDate() function, a cell error will occur.

· The behavior of PeriodsToDate() is shown in Figure A-35.

· [image: image61]
Figure A-35: Behavior of PeriodsToDate().

See also: .Siblings, OpeningPeriod()

Predict (mining_model_name, numeric_mining_expression) Returns: Number

Extension: AS2005, AS2000

· Predict() evaluates the given numeric_mining_expression against the data-mining model identified by mining_model_name. The actual syntax of the numeric_mining_expression is not part of MDX, but part of Microsoft’s OLE DB for Data Mining specification.

member.PrevMember

Standard

member.NextMember

Standard

· .PrevMember gives the previous member along the level implied by the member, while .NextMember gives the next member along the level implied by the member. Figure A-36 shows examples of .PrevMember and .NextMember. Note that these functions return the next or the previous member within the same level regardless of whether the new member shares the same parent or not.

· [image: image62]
Figure A-36: NextMember and .PrevMember.

See also: OpeningPeriod(), ClosingPeriod(), Is

Power (numeric_expression, exponent) Returns: number

Extension: Essbase

· Returns the value of numeric_expression raised to the power of exponent. If either argument is NULL, returns NULL. For example, Power(2, 0.5) returns 1.41421356237.

· See also: Ln(), Log(), Log10()

member.Properties(property name) Returns: string Standard (except Essbase 9)

member.Properties(property name, TYPED) Returns: various Extension: AS2005

· Returns the value of the named property at the member. The property name can be a string expression. If it is, the name expression is evaluated cell by cell every time the property reference is.

· Even though Analysis Services 2000 and 2005 support member properties in a variety of data types, the return value of the .Properties() function is coerced to be a string unless you include the TYPED flag. Then, the property value is returned in its internal data type.

· In Analysis Services, every member has associated properties named CAPTION, NAME, ID, and KEY.

· See also: .PropertyName, .MemberValue, StrToMember(), StrToSet(), StrToTuple(), StrToValue(), Members(), Dimensions(), Levels()

member.PropertyName Returns: string, number, boolean

Standard (except AS2000, AS2005)

· In Essbase, a property value associated with a member is referenced by member.PropertyName, where the name of the property is literally placed in the MDX. For example, the following retrieves the ClubStatus property value for the current Customer member:

[Customer].CurrentMember.[ClubStatus]

· Since the syntax for this kind of property reference is similar to the syntax for a number of functions, you should always use delimited names (in []) for property names.

· See also: .Properties(), .MemberValue, StrToMember(), StrToSet(), StrToTu-ple(), StrToValue(), Members(), Dimensions(), Levels()

Q

QTD ([member]) Returns: set

Standard

· QTD() is the equivalent of PeriodsToDate() with the level set to Quarter. If member is not specified, it defaults to the current member of the Time-typed dimension. If no Time-typed dimension is in the cube, or if one is in the cube without a level tagged as Quarter, then an error results.

· See also: PeriodsToDate(), YTD(), MTD(), WTD()

R

Rank(tuple, set) Returns: number (integer)

Standard (not by Essbase 9)

Rank(tuple, set, numeric_expression) Returns: number (integer)

Extension: AS2005, AS2000

· This function returns the (one-based) index of the tuple in the set. If the tuple is not found in the set, Rank() returns 0.

· If the optional numeric expression is provided, then it is evaluated for tuple. In AS2005, when this expression is found, the given ordering of the set is ignored. Instead, AS2005 puts the tuples of the set in ascending order according to numeric_expression, and returns the tied rank number according to that numbering. In AS2000, the numeric expression is evaluated for the neighbors of tuple in the ordering of the set as it is passed to Rank(). If two or more tuples share the same value in the set, then the rank number returned is the tied rank. Note that if the set is not sorted by the same numeric expression, then the rank numbers will reflect the (possibly tied) rank according to the set as it is actually sorted.

MEMBER

SALES

UNITS

Leather Jackets

100

5

Leather Pants

120

4

Leather Gloves

150

200

Leather Bags

150

16

Leather Skirts

200

4

· Consider the following examples against a simple set of numbers:

· Against this set of tuples (which we will call Set1) and associated values, the following is true:

· Rank ([Product].[Leather Pants], Set1) is 2.

· Rank ([Product].[Leather Bags], Set1, [Measures]

· .[Sales]) is 3 (tied with leather gloves).

· Rank ([Product].[Leather Skirts], Set1, [Measures]

· .[Units]) is 5 in AS2000 (the tie with leather pants is not noticed). In AS2005, it is 1 (tied for first place when sorted in ascending order).

· Note that the .Item() and Subset() functions use a zero-based index; the rank of Set.Item(0) is 1.

· See also: .Item(), Subset(), Head(), Tail()

RelMemberRange (member, lead_count, lag_count, [, layer_type]) Returns: set

Extension: Essbase

· This function is a generalization of LastPeriods() that makes it easier to express ranges that extend on both sides of a single member, for example to express ranges for seasonally adjusted averages. It returns a range that extends from lead_count members before member to lag_count members following member. By default, the members are drawn from the same depth in the hierarchy. If you specify a layer_type of LEVELS, the lead and lag range will be taken from members at the same height from the leaf level in the hierarchy. If you specify a layer_type of GENERATIONS, the behavior is the default. For example, the following returns the range { [Mar, 2005], [Apr, 2005], [May, 2005], [Jun, 2005], [Jul, 2005], [Aug, 2005] }:

RelMemberRange ([May, 2005], 2, 3)

· If the range extends beyond the edge of the dimension, the set returned will go to the edge of the dimension. In order to only use ranges that are of the full size requested, test both the lead and the lag members for existing with IsValid (member.Lead(lead_count)) and IsValid ((member.Lag(lag_count)).

· See also: LastPeriods(), Lead(), Lag()

Remainder (numeric_expression) Returns number

Extension: Essbase

· The Remainder() function returns the fractional component of a number. For example, Remainder (12.34) returns 0.34, and Remainder (-12.78) returns -0.78

· See also: Truncate()

RollupChildren(member, string expression) Returns: number

Extension: AS2005, AS2000

· This function is used to return the value generated by rolling up the children of a specified parent member using the specified unary operator. The string expression is evaluated once per child of member. You can use a constant string value for the expression, as well as a string value that changes with each member. The first (or only) unary operator may be one of +, -, ~, or a number, while subsequent operators may be one of +, -, *, /, ~ or a number. When a number is used, it is a weighting value; the effect is to multiply the cell value related to the child member by the number, and add it to the accumulating rollup value. Frequently, a reference to a member property ([Dimension].CurrentMember.Properties (“Some Property”)) will be the string expression. You may also use a string expression based on a property. For example, the following expression will create the positive sum of all children that would ordinarily be subtracted from the sum:

iif ([Accounts].CurrentMember.Properties ("UNARY_OPERATOR") <> "-",

 "~",

 "-"

)

· This function could be used, for example, in a budgeting application where there may be more than one way to roll up the Accounts dimension, and perhaps some costs are ignored in the alternate rollup. You could create a member property “alternate operators” to hold the operators of this alternate rollup. The following expression would return the results of this alternate rollup (note that the current member is evaluated once per child of [Account].[Net Profit]):

RollupChildren([Account].[Net Profit],

 [Account].CurrentMember.Properties("ALTERNATE_OPERATORS"))

· Note that if you use this function as a custom rollup operator (for example, in a local cube), you may need to use it in conjunction with an iif() test and the .Ignore function to avoid infinite recursion at leaf-level members.

· See also: Sum()

Root () Returns tuple

Extension: AS2005

Root (dimension) Returns tuple

Extension: AS2005

Root (tuple) Returns tuple

Extension: AS2005

· The Root() function returns a tuple of the root attribute-dimension members for each attribute hierarchy in the scope. If an attribute dimension does not have an All member, then the default member is included instead. It may return an empty or null tuple, as described below.

· If the argument is a dimension, then all the related attribute dimensions/ hierarchies for that dimension are included. In this case, it does not matter whether you pick the overall dimension (for example, [Product]) or a hierarchy within the dimension (for example, [Product].[ByCategory] or [Product].[Ship Weight]).

· If the argument is a tuple, then the result tuple contains the original members and all of the root members for the other attribute hierarchies in the respective dimensions. Note that the result tuple puts the members in a server-defined order, not the dimension order of members in the tuple. For example, you may have a tuple such as

([Product].[Shipweight].[12],

 [Time].[YQMD].[Oct, 2005])

· but if Time appears before Product in the order of dimensions in the cube designer, the time components of the result tuple will appear first. However, the Shipweight member will be [12] and the YQMD hierarchy member will be [Oct, 2005]. The tuple can contain a member from different attribute hierarchies of a single logical dimension, like [Time] or [Product], but if the members do not have a corresponding tuple in the dimension, the result tuple is null. If they do, each of the members is retained in the tuple.

· If this function is called with no argument, a tuple composed of the root members for each hierarchy is returned.

· Note that this function can be used anywhere, not just in MDX scripts

· See also: Leaves()

Round (numeric_expression, digits_expression) Returns number

Extension: Essbase

· The Round() function returns the value of numeric_expression rounded to the number of decimal places in digits_expression. For example, Round (5.1357, 2) returns 5.14, and Round (-5.1357, 2) returns -5.14.

· See also: Truncate()

S

Scope

Extension: AS2005

· Scope is an MDX Scripting statement that defines a subcube, within which the actions of other statements is limited. The general syntax is:

Scope subcube ;

 statement1 ; [... statementN ;]

End Scope ;

SetToArray(set [, set . . .][, numeric or string expression])

Standard (not in Essbase 9)

· The SetToArray() function creates an array as a COM Variant type that holds an array of values. The only use for this function in OLAP and Analysis Services is to pass the constructed array to an external function that is defined as taking an array.

· The constructed array will hold values of only one type (which might be, for example, long integer, single float, double float, or string). That type is determined by the type of the first value that is actually placed into the array. The dimensionality of the array that is created is determined by the number of sets that appear as arguments to SetToArray(). If the optional numeric or string expression is provided, it is evaluated over the cross-join of the sets, and the values are placed in the array. If the numeric or string expression is not provided, then the cross-join of the sets is evaluated in the current context, and the results obtained are placed in the array.

SetToStr(set) Returns: string

Standard (not in Essbase 9)

· This function constructs a string from a set. It will frequently be used to transfer a set to an external function that knows how to parse the string, even though the string is syntactically suitable for OLAP Services to parse into a set. OLAP Services constructs the string as follows: The first character is { and the last character is }. Between the braces, each tuple is listed in order. A comma and a space separate each tuple from the next name. If the set contains only one dimension, then each member is listed using its unique name. If the set contains more than one dimension, then each tuple begins with an open parenthesis [“(“] and ends with a closing parenthesis, “)”. The unique name of the member from each dimension is listed in the order of the dimensions in the set, separated by a comma and a space. For example, in a Time dimension that has three years, the expression

SetToStr ([Time].[Year].Members)

· would yield the following string:

"{[Time].[All Times].[1998], [Time].[All Times].[1999], [Time].[All

Times].[2000]}"

· Moreover, the expression

SetToStr ({([Time].[1998], [Customer].[Northeast]), ([Time].[1999],

[Customer].[Southwest])})

· yields the following string:

"{([Time].[All Times].[1998], [Customer].[All Customers].[Northeast]),

([Time].[All Times].[1999], [Customer].[All Customers].[Southwest])}".

· Fairly large strings (greater than 16K) will take significant time to create, and the first release of OLAP Services was released with problems that led to the truncation of strings. The further down the hierarchy the members are, the longer and more numerous their unique names are likely to be. So, you may need to perform your own performance evaluations when using this function.

· The style of the unique names generated into the string by this function will be affected by the MDX Unique Name Style and MDX Compatibility settings.

· See also: Generate(), StrToValue(), StrToSet(), StrToMember(), LookupCube()

Member.Siblings Returns: set

Extension: AS2005, AS2000, Essbase

· This function returns the set of metadata siblings of a specified member in the database’s default order. The resulting set includes the specified member itself. It does not include calculated members. Figure A-37 diagrams the selection of .Siblings.

· [image: image63]
Figure A-37: Diagram of .Siblings.

See also: .Children, .FirstSibling, .LastSibling

StdDev(set [, numeric value expression]) Returns: number

Standard

StdDevP(set [, numeric value expression]) Returns: number

Extension: AS2005, AS2000, Essbase

StDev(set [, numeric value expression]) Returns: number

Extension: AS2005, AS2000

StDevP(set [, numeric value expression]) Returns: number

Extension: AS2005, AS2000

· These functions return the standard deviation of a numeric expression evaluated over a set. If the numeric value expression is not supplied, these functions evaluate the set within the current context to determine the values to use. The formula for obtaining the standard deviation is as follows:

[image: image64]
· StDev() calculates the sample standard deviation and uses the unbiased formula for population (dividing by n - 1 instead of n). On the other hand, StDevP() calculates the population standard deviation and uses the biased formula (dividing by n). StdDev() and StdDevP() are aliases of StDev() and StDevP(), respectively.

StripCalculatedMembers(set) Returns: set

Extension: AS2005, AS2000

· The StripCalculatedMembers() function returns the members of set after removing all the calculated members. The set is limited to only one dimension. Note that this function removes all calculated members defined, whether they were defined by CREATE MEMBER at the server or at the client, or in the query through WITH MEMBER.

· See also: AddCalculatedMembers(), .AllMembers

StrToMember (string_expression) Returns: member

Standard (not in Essbase 9)

StrToMember (string_expression, CONSTRAINED) Returns: member

Extension: AS2005

· This function refers to a member identified by the string_expression. This will frequently be used along with external functions to convert a string returned by the external function to a member reference within the query. The string expression can be dynamic as well as a fixed string. When the CONSTRAINED flag is omitted, the expression can resolve to an MDX expression that evaluates to a member as well as just the name of a member When the CONSTRAINED flag is present, the string_ expression can still be a string expression instead of a literal string, but when the string is evaluated, it must be a qualified or unqualified member name, or else the evaluation results in an error. If the error occurs in evaluating a slicer or axis, the query execution will stop. If the error occurs in evaluating a result cell, the cell will have an error result.

· See also: Members(), StrToTuple(), StrToSet(), .Properties(), IsError()

StrToSet(string_expression) Returns: set

Standard (not in Essbase 9)

StrToSet (string_expression, CONSTRAINED) Returns: set

Extension: AS2005

· This function constructs a set from a string expression. This will frequently be used to transfer a set specification returned by a UDF back to the MDX statement. When the CONSTRAINED flag is omitted, the string must be a syntactically valid MDX set specification relative to the cube in whose context it is executed. For example, the set of all years in a Time dimension that has three year-level members could be created by passing either of the following strings into StrToSet:

"{[Time].[All Times].[2004], [Time].[All Times].[2005],

 [Time].[All Times].[2006]}"

"[Time].[Year].Members"

· When the CONSTRAINED flag is provided, the string expression must contain either a valid MDX tuple composed of named members, or a set of tuples composed of named members and enclosed by {}. Of the two examples above, the first would be allowed with the CONSTRAINED flag while the second one would not. If the error occurs in evaluating a slicer or axis, the query execution will stop. If the error occurs in evaluating a result cell, the cell will have an error result.

· See also: StrToTuple, SetToStr(), TupleToStr(), Members(), .Properties(), .Name, .UniqueName, IsError()

StrToTuple (string_expression) Returns: tuple

Standard (not in Essbase 9)

StrToTuple (string_expression, CONSTRAINED) Returns: tuple

Extension: AS2005

· This function constructs a tuple from a string expression. This will frequently be used to transfer a tuple specification that is returned by an external function back to the MDX statement. The string must be a syntactically valid MDX tuple specification relative to the cube in whose context it is executed. When the CONSTRAINED flag is omitted, the string_expression can contain any MDX expression that results in a tuple. For example, the following two strings would give identical results in the customer dimension, where [AZ] is a child of [Southwest], in that both would result in the Southwest region member:

"([Customer].[Southwest],[Time].[2006])"

"([Customer].[AZ].Parent,[Time].[2006])"

· When the CONSTRAINED flag is provided, the string expression must contain valid MDX tuple composed of named members, or else an error will result. Of the two examples above, the first would be allowed with the CONSTRAINED flag while the second one would not. If the error occurs in evaluating a slicer or axis, the query execution will stop. If the error occurs in evaluating a result cell, the cell will have an error result.

· See also: StrToSet(), SetToStr(), TupleToStr(), Members(), .Properties(), .Name, .UniqueName, IsError()

StrToValue (string expression) Returns: number or string

Extension: AS2005, AS2000

StrToValue (string_expression, CONSTRAINED) Returns: number or string

Extension: AS2005

· This function takes the results of an arbitrary string expression and evaluates it as an MDX expression in the current context of the cube or query. The string expression can be dynamic as well as a fixed string. When the CONSTRAINED flag is omitted, the MDX expression can be arbitrarily complicated so long as it returns a single cell value. When the CONSTRAINED flag is provided, the string expression must contain only a constant value, or else an error will result. If the error occurs in evaluating a slicer or axis, the query execution will stop. If the error occurs in evaluating a result cell, the cell will have an error result.

· See also: StrToSet, SetToStr(), TupleToStr(), Members(), .Properties(), .Name, .UniqueName

Subset (set, start [, count]) Returns: set

Extension: AS2005, AS2000, Essbase

· This function returns up to count elements from set, starting at start. The start index is zero-based: the first element in the set is at index 0, and the last is at one less than the number of tuples in the set. If count is not specified or is greater than the number of elements in the set following Start, all elements from Start to the end of the set are returned. If count is less than 1, then an empty set is returned.

· See also: Head(), Tail(), Index(), .Count, Count(), Rank()

Sum (set [, numeric value expression]) Returns: number

Standard

· This function returns the sum of values found across all tuples in the set. If numeric value expression is supplied, then it is evaluated across set and its results are summed; otherwise, set is evaluated in the current context and the results are summed.

· See also: Aggregate(), Avg(), Count(), .Count, Min(), Max()

T

Tail(set [, count]) Returns: set

Extension: AS2005, AS2000, Essbase

· This function returns a set of the last count elements from the given set. The order of elements in the given set is preserved. If count is omitted, the number of elements returned is 1. If count is less than 1, an empty set is returned. If the value of the count is greater than the number of tuples in the set, the original set is returned.

· See also: Subset(), Head(),Index(), .Count, Count(), Rank()

This Returns: subcube

· This function returns the currently specified scope in an MDX script. May be assigned to or have properties set for it.

· See also: .CurrentMember

ToDate (date_fmt_string, date_value_string) Returns: number

Extension: Essbase

· This function converts the date named in date_value_string using the format given in date_fmt_string to a number that Essbase uses as a date reference. Member properties of “Date” type use the same date reference, so this is especially helpful in expression a filter criterion for date-related properties. The allowable date_fmt_string values and corresponding example date_value_string values are shown in the following table.

Date_fmt_string value

Date_value string example

“dd-mm-yyyy”

“31-03-2005” meaning March 31, 2005

“mm-dd-yyyy”

“03-31-2005” meaning March 31, 2005

· See also: Attribute(), WithAttr()

ToggleDrillState (set1, set2 [, RECURSIVE]) Returns: set

Standard (not in Essbase 9)

· This function returns a set in which those members or tuples in set1 that are drilled up are drilled down and those members or tuples in set1 that are drilled down are drilled up. This function combines the operations of DrillUpMember() and DrillDownMember(). Set1 can contain tuples of arbitrary dimensionality; set2 must contain only members of one dimension. A member or tuple in set1 is considered drilled down if it has any descendant immediately following it and is considered drilled up otherwise. When a member is found without a descendant immediately after it, DrillDownMember() will be applied to it, with the RECURSIVE flag if the RECURSIVE is present.

· See also: DrillDownMember(), DrillUpMember()

TopCount (set, index [, numeric expression]) Returns: set

Standard

BottomCount (set, index [, numeric expression]) Returns: set

Standard

· TopCount() returns the top index items found after sorting the set. The set is sorted on the numeric expression (if one is supplied). If there is no numeric expression, the cells found in the evaluation context are used. The Bottom-Count() function is similar to TopCount(), except that it returns the bottom index items. TopCount() returns elements ordered from largest to smallest in terms of the cells or expression used; BottomCount() returns them ordered from smallest to largest. Any duplicate tuples are retained during sorting, and those that make the cutoff are retained.

· These functions always break the hierarchy. If members from multiple levels are combined in the set, then they are all treated as peers. If duplicate values exist for some of the cells in set, these functions may pick an arbitrary set. For example, suppose the set of values (when sorted) is as follows.

FRUIT

VALUE

Strawberries

12

Cantaloupes

10

Peaches

8

Apples

8

Kiwis

8

Bananas

4

· In this case, selecting the top three or bottom two fruits based on values will cause an arbitrary choice to be made at the value of 8. The results are functionally equivalent to Head(Order(set, numeric value expression, BDESC), index) and Head(Order(set, numeric value expression, BASC), index).

· Note that Essbase always removes tuples from the set whose numeric expression is NULL. If you want them included at some position, use CoalesceEmpty() in the numeric expression to convert the NULL to some value.

· See also: TopSum(), BottomSum(), TopPercent(), BottomPercent()

TopPercent(set, percentage, numeric expression) Returns: set

Standard

BottomPercent(set, percentage, numeric expression) Returns: set

Standard

· TopPercent() returns the top percentage tuples of set, based on numeric expression if specified. The cells or expression are summed over the set, and the top set of elements whose cumulative total of the numeric expression is at least percentage is returned. Percentage is a numeric expression. For example, using the sorted set of fruits and values, TopPercent(fruit, 50, Value) will result in {Strawberries, Cantaloupes}. Strawberries is 24 percent of the total, Cantaloupes 1 Strawberries is 44 percent of the total, and Peaches would push the set over the 50 percent limit to 56 percent.

· BottomPercent() behaves similarly, except that it returns the bottom set of elements whose cumulative total from the bottom is less than the specified percentage. TopPercent() returns elements ordered from largest to smallest in terms of the cells or expression used; BottomPercent() returns them ordered from smallest to largest.

· The percentage is specified from 0 to 100 (not 0 to 1.0). These functions always break the hierarchy. Like TopCount() and BottomCount(), they may pick an arbitrary cutoff when some cells have the same values. Any duplicate tuples are retained during sorting, and those that make the cutoff are retained. Note that these functions do not have anything to do with taking tuples in the top or bottom percentile ranges according to the statistical definition of percentiles.

· Note that Essbase always removes tuples from the set whose numeric expression is NULL. If you want them included at some position, use CoalesceEmpty() in the numeric expression to convert the NULL to some value.

· See also: TopCount(), BottomCount(), TopSum(), BottomSum()

TopSum(set, value, numeric expression) Returns: set

Standard

BottomSum (set, value, numeric expression) Returns: set

Standard

· TopSum() returns the subset of set, after sorting it, such that the sum of the cells (or numeric value expression, if supplied) is at least value. This function always breaks the hierarchy. For example, given the sorted set of fruits and values, TopSum(fruit, 24, value) would return {Strawberries, Cantaloupes}. Strawberries’ 12 is less than 24, and Strawberries 1 Cantaloupes is 22, while adding Peach’s 8 to the 22 would push it over the limit of 24 to 30. The BottomSum() function behaves similarly, except that it returns the bottom set of elements whose cumulative total from the bottom is less than the specified value. TopSum() returns elements ordered from largest to smallest in terms of the cells or expression used; BottomSum() returns them ordered from smallest to largest.

· These functions always break the hierarchy. Like TopCount() and Bot-tomCount(), they may pick an arbitrary cutoff when some cells have the same values. Any duplicate tuples are retained during sorting, and those that make the cutoff are retained.

· Note that Essbase always removes tuples from the set whose numeric expression is NULL. If you want them included at some position, use CoalesceEmpty() in the numeric expression to convert the NULL to some value.

· See also: TopCount(), BottomCount(), TopPercent(), BottomPercent()

TupleRange (start_tuple, end_tuple) Returns: set

Extension: Essbase

· This function returns a raveled set of tuples from the start_tuple through the end_tuple. Both start_tuple and end_tuple must have the same dimen-sionality. For example, in the conventional use, both start_tuple and end_tuple will be a tuples with dimensionality (year, period_within_year). The expression

TupleRange (

 ([Year].[2004], [Period].[November]),

 ([Year].[2005], [Period].[February])

)

· returns the set

{ ([Year].[2004], [Period].[November])

 ([Year].[2004], [Period].[December])

 ([Year].[2005], [Period].[January])

 ([Year].[2005], [Period].[February]) }

· Cubes in which the year is in one dimension and subyear periods are in another dimension will have an easier time expressing some ranges using this function. In general, starting from the start_tuple, the second dimension of the tuple is advanced to the next member in the same generation until the end of that dimension, at which point the first dimension of the tuple is set to the next member in the same generation as the corresponding member in start_tuple, and the second dimension is set to the first member at the same generation as the original member in start_tuple. The tuples are enumerated in this fashion until the end_tuple is reached. If there are more than two dimensions in the tuples, all members of the more nested dimensions at the same generation as their specified members are simply cross-joined in.

· See also: CrossJoin(), Generate().

Truncate (numeric_value_expression) Returns: number

Extension: Essbase

· Returns the integral portion of the expression provided, keeping the sign of the number the same. Truncate (3.57) yields 3, and Truncate (-12.87) yields -12.

· See also: Round(), Remainder()

TupleToStr(tuple) Returns: string

Standard (not in Essbase 9)

· This function constructs a string from a tuple. This will frequently be used to transfer a tuple specification to an external function. If the tuple contains only one dimension, the unique name for its member is placed in the string. (In this use, it is identical to Member.UniqueName.) If the tuple contains more than one dimension, Analysis Services constructs the string as follows. The string begins with an open parenthesis [“(“] and ends with a closed parenthesis [“(“]. In between the parentheses, the member’s unique name is placed in the string for each dimension in the order they follow in the tuple. Each member is separated by a comma and a space. For example, the expression

TupleToStr ((Time.[1997], Customer.[AZ]))

· which uses names that are not quite the members’ unique names, might return the following string:

"([Time].[All Times].[1997], [Customer].[All

Customers].[Southwest].[AZ])"

· If the tuple is a result of an invalid member reference, then the resulting string is empty (instead of an error result).

· The style of name generated depends on the MDX Unique Name Style and MDX Compatibility settings.

· See also: SetToStr(), StrToTuple(), .Name, .UniqueName, StrToMember(), Members(), StrToValue(), LookupCube()

U

UDA({ member | dimension }, string_literal) Returns: set

Extension: Essbase

· This function returns all descendants of member or all members of dimension that have the associated UDA value given in string_literal. It is equivalent to filtering all members within that scope (at all layers in the hierarchy) using the IsUDA() function, but will operate much more quickly and is more direct in expression the intent.

· See also: IsUDA()

Union(set1, set2 [, ALL]) Returns: set

Standard

set1 + set2 Returns: set

Extension: AS2005, AS2000

· This function returns the union of the two sets. The ALL flag controls whether duplicates are retained or eliminated; by default, they are eliminated. When duplicates of each tuple are eliminated, the first instance of each tuple is retained according to the order in which it appears. The effect of this function is that set2 is appended to set1, and then all copies of each tuple are removed after the first instance of that tuple in the appended version. When duplicates are retained, any duplicates in the set1 are retained, and any additional copies in set2 are also retained. The effect of the union is that set2 is appended to set1. For example, the expression

Union (

 { [Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale],

 [Customer].[KS].[Pittsburg], [Customer].[AZ].[Phoenix] },

 { [Customer].[NM].[Albuquerque], [Customer].[AZ].[Phoenix],

 [Customer].[AZ].[Scottsdale], [Customer].[AZ].[Phoenix]

)

· yields the following set:

{ [Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale],

 [Customer].[KS].[Pittsburg], [Customer].[NM].[Albuquerque] }

· The expression

Union (

 { [Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale],

 [Customer].[KS].[Pittsburg], [Customer].[AZ].[Phoenix] },

 { [Customer].[NM].[Albuquerque], [Customer].[AZ].[Phoenix],

 [Customer].[AZ].[Scottsdale], [Customer].[AZ].[Phoenix] }

 , ALL

)

· yields the following set:

 { [Customer].[AZ].[Phoenix], [Customer].[AZ].[Scottsdale],

[Customer].[KS].[Pittsburg], [Customer].[AZ].[Phoenix],

[Customer].[NM].[Albuquerque], [Customer].[AZ].[Phoenix],

[Customer].[AZ].[Scottsdale], [Customer].[AZ].[Phoenix] }

· Microsoft OLAP Services and Analysis Services also provide + as an alternate way of specifying Union(). Duplicates are removed from the resulting set. The expression Set1 + Set2 + Set3 is equivalent to Union (Set1, Union (Set2, Set3)).

· See also: Intersect(), Except(), {}

Dimension.UniqueName Returns: string

Extension: AS2005, AS2000

· This function returns the unique name of a dimension. In Microsoft’s OLAP products, this does not include the name of the cube.

· See also: .Name

Level.UniqueName Returns: string

Extension: AS2005, AS2000

· This function returns the unique name of a level. In Microsoft’s OLAP products, this does not include the name of the cube. It will be either

· [Dimension].[Level] or [Dimension].[Hierarchy].[Level], depending on the structure of the dimension.

· See also: .Name, Levels()

Member.UniqueName Returns: string

Extension: AS2005, AS2000

· This function returns the unique name of a member. In Microsoft’s OLAP products, this does not include the name of the cube, and the results are dependent on the MDX Unique Name Style connection property or the equivalent server-side setting.

· See also: StrToMember(), StrToTuple(), StrToSet(),TupleToStr(), .Name

member.UnknownMember Returns: member

Extension: AS2005

· This function returns the member created by AS2005 for handling “unknown hierarchy” conditions in fact data. Unknown members can be created at one of the following levels:

· The top level, in attribute hierarchies that cannot be aggregated

· The level beneath the (All) level for natural hierarchies

· Any level (for other hierarchies)

· If the unknown member is requested for a member, then the child of the given member that is an “unknown member” is returned. If the unknown member does not exist under the given member, a NULL member reference is returned.

· See also: .CurrentMember, .DefaultMember

Unorder() Returns: set

Extension: AS2005

· This function relaxes MDX-specified ordering from the tuples or members of a set. Generally speaking, this function is a hint for optimization of a set operation. For example, a set that is input to NonEmpty(), Top-Count() or Order() may not have any need to have the sequence of input tuples preserved. (For functions that sort the input sets, like TopCount() and Order(), this is because the stable sorting requirement becomes relaxed.) Therefore, NonEmpty (Unorder(set)) may run more quickly than NonEmpty (set). Note that AS2005 automatically attempts to perform this optimization for functions like Sum(), Aggregate(), so you may not notice any performance gain attempting to aggregated Unorder()’d sets.

UserName Returns: string

Extension: AS2005, AS2000

· This function returns the username of the user executing the function. The name is returned in Domain\Name format. For example, if user Lisa in the domain ITCMAIN invokes a calculation that uses this function, it will return “ITCMAIN\Lisa”.

· See also: CustomData

V

ValidMeasure (tuple) Returns: tuple

Extension: AS2005, AS2000

· This function returns the value of the measure specified by the tuple where the measure has been projected to a meaningful intersection in a virtual cube. When a virtual cube joins two or more regular cubes that have different dimensionality, all base data values in the virtual cube are found at the ALL levels of each dimension that is not shared by all cubes. You can always reference these base data cells by explicitly qualifying the measure reference to the ALL level of each dimension (for example, ([Measures].[Employee Count], [Product].[All Products], [Customer].[All Customers])). This function is a convenience because you do not need to explicitly reference all of the dimensions that are not relevant to the measure.

· The tuple may contain members from any dimensions of the virtual cube (and it does not need to have a measure in it). Any members for noncom-mon dimensions for the measure are projected to the ALL member. Any members for dimensions that are in common are used to locate the value returned. The function can be used with regular cubes, but in that case it does nothing to change the location of reference for the measure. Note that you need an extra set of parentheses to define the tuple if it contains more than one member

ValidMeasure (([Measures].[Qty Purchased], [Time].PrevMember))

· instead of

ValidMeasure ([Measures].[Qty Purchased], [Time].PrevMember)

· In AS2005, keep in mind that setting the IgnoreUnrelatedDimensions option on a measure group will turn on an automatic ValidMeasure behavior, which obviates the need for this function

measure[.Value] Returns: number or string

Standard (except AS2000)

· The .Value operator returns the value of the specified measure at the location formed by the current members of all other dimensions in context. We show this operator as optional because it is the default operator on a measure in a calculation or query context. If you leave it off, you get the value of the measure anyway because the default interpretation of a measure is to take its value. This operator exists simply as a specific counterpart to the other functions that return aspects of a member, such as .Name (which would return the name of the measure).

Var(set [, numeric value expression]) Returns: number

Standard (except by Essbase 9)

Variance(set [, numeric value expression]) Returns: number

Extension: AS2005, AS2000

VarianceP(set [, numeric value expression]) Returns: number

Extension: AS2005, AS2000

VarP(set [, numeric value expression]) Returns: number

Extension: AS2005, AS2000

· These functions return the variance of a numeric expression evaluated over a set. If the numeric expression is not supplied, these functions evaluate the set within the current context to determine the values to use. The formula for obtaining the variance is

[image: image65]
· Var() calculates the sample variance and uses the unbiased population formula (dividing by n – 1), while VarP() calculates the population variance and uses the biased formula (dividing by n). Variance() and Varian-ceP() are aliases of Var() and VarP(), respectively.

· See also: Stdev(), StdevP()

VisualTotals (set, pattern) Returns set

Extension: AS2005, AS2000

· The function accepts a set that can contain members at any level from within one dimension. (The set can only include members from one dimension.) Typically, the set contains members with some ancestor/ descendant relationship. For the set that is returned, aggregate data values for the ancestor data values are calculated as aggregates of the children or descendants provided in the set instead of using all children from the dimension. (When the set corresponds to children visible in the GUI, the parents are totaled according to the visible members, which is the origin of the “visual totals” name). The pattern is a string that is used to identify visual-total members- “visually” totaled members are identified in the results using this pattern string. . Wherever an asterisk appears in the string, the name (the simple name, not the unique name) of that parent member is inserted. A double asterisk (**) causes an asterisk character to appear in the name.

Note

While this function exists in both AS 2005 and AS 2000, its behavior has changed substantially between the releases. In AS2005, the function works with all measure aggregation types, in contrast with AS2000 in which it did not work with DISTINCT COUNT measures. We will describe the AS 2005 behavior first and then the AS 2000 behavior.

· In Analysis Services 2005, VisualTotals() effectively redefines the parent members listed in the set to have only children/descendants as they appear in the set, changing the display caption of the parent members to match the naming pattern as well. This affects all uses of the members in the entire query, not just within the set. In terms of calculations, it is similar to, but not the same as defining a subcube consisting of the just the lowest-level members in the set.

· Consider the following query, whose results are shown in Figure A-38:

WITH

SET [VT1] AS

VisualTotals (

 { [Product].[ByCategory].[Category].&[2],

 {[Product].[ByCategory].[Subcategory].&[12],

 [Product].[ByCategory].[Subcategory].&[15]}

 },

 "(total *)"

)

SELECT

{ [Measures].[Unit Sales], [Measures].[Dollar Sales]} on 0,

{ [VT1],

 [Product].[ByCategory].[Category].&[2],

 [Product].[ByCategory].[Family].&[1] }

} on 1

FROM [Sales]

Unit Sales

Dollar Sales

(total Outdoor Gear)

13,505

$346,008.44

Inflatable Boats

4,625

$199,377.93

Multi-Tools, Knives

8,880

$226,631.05

(total Outdoor Gear)

13,505

$346,008.44

Outdoor & Sporting

256,691

$6,493,322.31

Figure A-38: Results of VisualTotals() in AS 2005.

· You can see that the first three rows represent the VT1 set, which includes two product subcategories and their Outdoor Gear parent. The fourth row was a request for the Outdoor Gear member outside of the VisualTotals(), but it returns the same value as the VisualTotals() result since the member has been redefined for the whole query. The last row is a request for the Outdoor & Sporting member which is the parent of Outdoor Gear. Its aggregates include only the visible Outdoor Gear values, but also all the values from the siblings of Outdoor Gear. Unlike a subcube, VisualTotals() does not effectively make members invisible, but it does change the set of children/descendants that contribute to an ancestor.

· This global impact has a slightly surprising effect. Consider the following query, whose results are shown in Figure A-39:

WITH

SET [VT1] AS

VisualTotals (

 { [Product].[ByCategory].[Category].&[2],

 { [Product].[ByCategory].[Subcategory].&[12],

 [Product].[ByCategory].[Subcategory].&[15] }

 },

 "(total *)"

)

SET [VT2] AS

VisualTotals (

 { [Product].[ByCategory].[Category].&[2],

 { [Product].[ByCategory].[Subcategory].&[9],

 [Product].[ByCategory].[Subcategory].&[12] }

 },

 "(total *)"

)

SELECT

{ [Measures].[Unit Sales], [Measures].[Dollar Sales]} on 0,

{ [VT1], [VT2] } on 1

FROM [Sales]

Unit Sales

Dollar Sales

(total Outdoor Gear)

14,536

$385,402.15

Inflatable Boats

4,625

$199,377.93

Multi-Tools, Knives

8,880

$226,631.05

(total Outdoor Gear)

14,536

$385,402.15

Coolers

9,911

$266,024.76

Inflatable Boats

4,625

$119,377.93

Figure A-39: Results of two VisualTotals() using same parent member.

· You can see two different VisualTotals() calls, with the same parent member in each. This results in that member appearing twice in the query result. The aggregated values are calculated by the second call’s set. Note that placement of members is more flexible in AS2005 than in AS2000. In particular, you can have visual totals parents following their children instead of only preceding them, which enables more display requirements to be fulfilled.

· In Analysis Services 2000, VisualTotals() returns a set that includes dynamically created calculated members that total up the given descendants for an ancestor. When a parent member is followed by one or more of its children in the given set, or an ancestor by one or more of its descendants, the function replaces that parent or ancestor member with a synthesized member that totals the values taken only from the children or descendants that follow it in the set. The name of the synthesized member is formed from the pattern given in the pattern argument. The order of the appearance of members is important; a parent that is to be replaced by a synthetic visual total must appear immediately before its children. The sets created by the DrillDownXXX functions are likely to fit VisualTotal()’s member ordering requirements.

· The synthesized members are named using the text from the pattern string, per the rules described earlier. Consider the following Visual-Totals() expression, which contains numerous parents and ancestors (its results are shown in Figure A-40).

WITH

MEMBER [Measures].[AvgPrice] AS '[Measures].[Total] /

[Measures].[Qty]', FORMAT_STRING = '#.00000'

SET [Rowset] AS 'VisualTotals (

{

[Time].[All Time].[2001].[Q1, 2001],

[Time].[All Time].[2001],

[Time].[All Time].[2001].[Q1, 2001].[January],

[Time].[All Time].[2001].[Q1, 2001].[February],

[Time].[All Time].[2001].[Q2, 2001],

[Time].[All Time].[2001].[Q2, 2001].[May],

[Time].[All Time].[2001].[Q2, 2001].[June],

[Time].[All Time].[2001].[Q1, 2001],

[Time].[All Time].[2001].[Q2, 2001],

[Time].[All Time],

[Time].[All Time].[2001].[Q1, 2001].[January].[Jan 01, 1998],

[Time].[All Time].[2001].[Q1, 2001].[January].[Jan 02, 1998]

}

, "vt *")'

SELECT

{ {[Measures].[Qty], [Measures].[Total], [Measures].[AvgPrice} } on

axis(0),

{ [Time].[All Time].[2001].[Quarter 1], [Rowset]

} on axis(1)

FROM cakes03

Qty

Total

Average Price

Quarter 1

1,811,965.00

44,166,000.00

24.37464

vt 2001

5,965,904.00

133,988,515.00

22.45905

January

620,829.00

16,343,870.00

26.32588

February

572,194.00

13,863,990.00

24.26447

vt Quarter 2

1,186,056.00

23,660,064.00

19.94852

May

614,945.00

12,267,870.00

19.94954

June

571,111.00

11,392,190.00

19.94743

Quarter 1

1,811,965.00

44,166,000.00

24.37464

Quarter 2

1,774,860.00

35,934,600.00

20.24644

vt All Time

39,239.00

1,220,641.20

31.10786

Jan 01, 2001

16,127.00

492,969.90

30.56799

Jan 01, 2001

23,112.00

727,671.30

31.48457

Figure A-40: Sample results from VisualTotals().

· This highlights some of the useful aspects of VisualTotals() and also some of its quirks, which you will need to be aware of. Looking at the [vt All Time] member toward the bottom of the report, the All Time total is simply the sum of the two day-level members following it, and a similar look at [vt Q2, 2001] shows that it is the sum of the two Q2 months following it. Looking at the Qty measure for [vt 2001], the value 1,186,056 is the sum of values found for January, February, [vt Quarter 2], [Quarter 1], and [Quarter 2]. In other words, [vt Quarter 2] was not double-counted with [May] and [June]. You do need to be careful in how you place descendants, however. [Quarter 1] and [Quarter 2] are included in the total without regard to the fact that their descendants have already been incorporated into the total.

· The bottom three rows of the VisualTotals() expression just presented show that VisualTotals() can work against ancestors and descendants of arbitrary depth. The [All Time] member is the higher level member in the dimension, while each day is at the leaf level. If you observe the values for the [AvgPrice] measure in the query, you can see that it is calculated after the visual totals, despite the fact that it is at solve order precedence 0. The VisualTotals() aggregation is documented to be at solve order –4096, so calculated member definitions will ordinarily override VisualTotals() synthetic aggregates. Meanwhile, VisualTotals() synthetic aggregates should be calculated from the results of custom rollups, because they are at solve order -5119.

· Note that the synthetic members in the set returned by VisualTotals() are almost fully equivalent to calculated members created by other means. They cannot exist outside of a set as a calculated member, so they will not appear as metadata items through OLE DB for OLAP. They can be part of a set held in a CREATE SET statement and are treated as another calculated member by StripCalculatedMembers(). They can be filtered by name and unique name. They cannot, however, be referenced by a tuple reference in a formula because they are not entered into Microsoft Analysis Services’s internal list of metadata objects.

W

WithAttr (attribute_dim, comp_string, numeric_expression | string_literal)

Returns: set

Extension: Essbase

· WithAttr() returns all base members of the attribute dimension whose associated attribute values in the attribute_dim meet the criteria expressed by the comp_string and the string_literal or numeric_expression. The comp_string must be a string literal from the set of possibilities in the following table.

STRING

ATTRIBUTE VALUE RELATION TO LITERAL

"=="

Equal to literal

"!=" or "<>"

Not equal to literal

">"

Greater than literal

"<"

Less than literal

">="

Greater than or equal to literal

"<="

Less than or equal to literal

"IN"

At or under the attribute member identified by the literal in the attribute dimension’s hierarchy

· It is equivalent to filtering all of the base dimension’s members and comparing their values using the expression in comp_string, but will operate more quickly. While strings must be literals, you can use numeric expressions to compute the comparison numbers, for example arithmetic functions or the ToDate() function for date-valued attributes.

· See also: Attribute(), IN, ToDate(), Filter()

WTD([member]) Returns: set

Standard

· WTD() is the equivalent of PeriodsToDate() with the level set to Week. If member is not specified, it defaults to the current member of the Time-typed dimension. If no Time-typed dimension exists in the cube, or if it does not have a level tagged as Week, then a parser error results.

· See also: PeriodsToDate(), QTD(), MTD(), YTD()

X

expr1 XOR expr2 Returns: Boolean

Standard

· The result of this operator is true if only either expr1 or expr2 is true, and false if they both are true or both false. Both expressions must be evaluated in order to determine this.

Y

YTD([member]) Returns: set

Standard

· YTD() is the equivalent of PeriodsToDate() with the level set to Year. If member is not specified, it defaults to the current member of the Time-typed dimension. If no Time-typed dimension exists in the cube, or if it does not have a level tagged as Year, then a parser error results.

· See also: PeriodsToDate(), QTD(), MTD(), WTD()

WriteBack Split Options:

	USE_EQUAL_ALLOCATION
	The new value assigned to the parent cell is divided equally between the children of the parent cell (the default allocation). Analysis Services uses the following formula:

Child_Value = New_Parent_Value / Number Of Descendants

	USE_EQUAL_INCREMENT
	The value in each child cell is incremented by the delta of the new value assigned to the parent cell divided by the number of child cells. Analysis Services uses the following formula:

Child_Value = Old_Child_Value + (New_Parent_Value-Old_Parent_Value) / Number of Descendants

	USE_WEIGHTED_ALLOCATION
	The new value assigned to the parent cell is divided between children cells according to the weight specified by the Weight_Value_Expression clause. Weight_Value_Expression should evaluate to a numeric value between 0 and 1. Analysis Services uses the following formula:

Child_Value = New_Parent_Value * Weight

	USE_WEIGHTED_INCREMENT
	The value in each child cell is incremented by the delta of the new value assigned to the parent cell divided between children cells according to the weight specified by the Weight_Value_Expression clause. Weight_Value_Expression should evaluate to a numeric value between 0 and 1. Analysis Services uses the following formula:

Child_Value = Old_Child_Value + (New_Parent_Value-Old_Parent_Value) * Weight

PAGE
72

